首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Topsoil samples from cultivated and adjacent non‐cultivated fields on three major agricultural soils in North Cameroon were fractionated into particle‐size fractions that were analysed subsequently for their C and 13C contents. The aim was to obtain further insight into the dynamics of soil organic matter (SOM) in relation to land use in Cameroon. Since organic carbon contents of the fractions were often very small, samples and analyses were extensively replicated to obtain robust statistical estimates of observed differences. For each soil type, differences in δ13C values between fields could be related to changes in the input and decomposition of organic matter arising from soil type, land management and, for example, the nature and abundance of weeds. Turnover of organic matter appeared to be fastest in the sand fraction, which is in line with results from earlier studies. In the finer fractions, clear differences in reaction to changes in input and decomposition were observed, that seem to be linked to differences in clay mineralogy. The results illustrate that SOM in the various fractions is much less stable and more strongly affected by changes in land use than might be assumed on the basis of changes in total SOM contents alone. At the same time, they demonstrate the relevance of 13C isotope analyses of SOM for studies on the impact of land use on these savannah soils with little SOM that are highly susceptible to degradation.  相似文献   

2.
A detailed discussion of the quantitative nature of 13C CPMAS NMR spectra as applied to solid samples, such as soil, is given. In particular, the influence of the cross-polarization (CP) time constant (TCH), the relaxation time constant of protons in the rotating frame (T1pH) and the contact time (tc) in the CPMAS experiment are considered. Three distinct quantitation regimes are numerically identified according to sample parameters tCH and T1PH > and the experimental choice of tc: (i) quantitation obtainable from a single CPMAS spectrum; (ii) quantitation obtainable from a series of CPMAS spectra; and (iii) quantitation not possible using CPMAS. Strategies for the measurement of sample parameters TCH and TipH are reviewed. When quantitation is not possible using CPMAS it is necessary to regress to the direct polarization (DP) of 13C nuclei. The sensitivity problems of DPMAS are discussed, as too are general factors that affect the quantitation of 13C data such as spinning sidebands. More specifically in relation to soil samples, the effects on quantitation arising from the presence of paramagnetics and the actual methods for the measurement of signal intensities are covered.  相似文献   

3.
Spin counting on solid‐state 13C cross‐polarization (CP) nuclear magnetic resonance (NMR) spectra of two humic fractions isolated from tropical lowland soils showed that only 32–81% of potential 13C NMR signal was detected. The observability of 13C NMR signal (Cobs) was higher in the mobile humic acid (MHA) than in the calcium humate (CaHA) fraction, and increased with increasing intensity of irrigated rice cropping. NMR observability appeared to be related to the nature of the organic carbon, with phenol‐ and methoxyl‐rich samples having the higher values of Cobs. The Bloch decay (BD) technique provided more quantitatively reliable 13C NMR spectra, as evidenced by values of Cobs in the range 91–100% for seven of the eight humic fractions studied. The BD spectra contained considerably more aryl and carbonyl signal, and less O–alkyl and alkyl signal, with the greatest differences between CP and BD spectra observed for the samples with low Cobs(CP). The causes of low CP observability were investigated using the spectral editing technique RESTORE ( RE storation of S pectra via T CH and T O ne R ho (T1ρH) E diting). Rapid T1ρH relaxation was found to be primarily responsible for the under‐representation of carbonyl carbon, whereas inefficient cross‐polarization was primarily responsible for the under‐representation of aryl carbon in CP spectra. Proton NMR relaxation rates T1H and T1ρH were found to correlate with other NMR properties and also with cropping management. Non‐uniform rates of T1H relaxation in two of the CaHA fractions enabled the generation of proton spin relaxation editing subspectra.  相似文献   

4.
Nuclear magnetic resonance (NMR) spectra were obtained for solid samples of whole soils from three long–term field sites at Rothamsted Experimental Station, UK. In all sites, soil organic matter content was either increasing or decreasing due to contrasted long–continued treatments. Two soils were from Highfield, one from under old grassland (47 g organic C kg?1) and one from an area kept as bare fallow following ploughing of grass 21 years previously (14 g organic C kg?1). Three soils were taken from Broadbalk, two from plots within the Broadbalk Continuous Wheat Experiment which had received no fertilizer or animal manure annually for 148 years (7 and 27 g organic C kg?1, respectively) and one from Broadbalk Wilderness, wooded section (38 g organic C kg?1). Broadbalk Wilderness was arable until 1881 and has reverted to deciduous woodland in the subsequent 110 years. Two soils were from Geescroft, one from an arable field (9 g organic C kg?1) and one from Geescroft Wilderness (35 g organic C kg?1) which began reversion to deciduous woodland at the same time as Broadbalk Wilderness but is now acid (pH = 4.2) in contrast to Broadbalk which is calcareous (pH = 7.3). Solid–state 13C NMR spectra were obtained on a 300–MHz instrument using cross polarization (CP) and magic angle spinning (MAS). All samples exhibited peaks in the following spectral regions: 0–45 ppm (alkyl), 45–60 ppm (methoxyl, carbohydrate and derivatives), 60–110 ppm (carbohydrates and derivatives, C–α of peptides), 110–160 ppm (aromatics) and 160–185 ppm (carboxyl groups and derivatives). Within the spectrum of a specific sample it was not possible to determine the relative proportions of soil organic carbon in the different forms identified because a range of factors can potentially alter the relative areas of peaks in different regions of the spectrum. However, from a comparison of relative peak areas within a set of soils from a given site, differing only in organic matter content, information can be deduced regarding the forms of C that are more or less subject to change in response to land use or management. At all sites carbohydrate C appears to be the form that is most subject to change, suggesting that it is an ‘active’ fraction compared with the other forms. It was greatest where organic matter inputs were greatest (due to inputs of farmyard manure or reversion to woodland) and declined relative to other forms following ploughing of old grassland. Alkyl C increased as total C accumulated but did not decline relative to other forms following ploughing of grass. One reason for the non–quantitative nature of the soil 13C CPMAS spectra was a short (approximately 1 ms) component of the rotating–frame TI relaxation time for H nuclei (T1pH). This problem was not overcome by acquiring data at – 60°C. In principle, solid–state spectra of soils obtained by direct polarization (i.e. without CP) might produce quantitative results, but the low C content of most mineral soils (10–50 g C kg?1) precludes this, given current instrumentation.  相似文献   

5.
l3C–nuclear magnetic resonance (NMR) spectra taken using magic–angle spinning (MAS), cross polarization (CP) and with total suppression of side bands (TOSS) are reported for soils from two long–term field experiments. One set of soils was from the Broadbalk Experiment at Rothamsted, UK (monoculture of winter wheat since 1843) and the other was from the Lermarken site of the Askov Long–Term Experiment on Animal Manure and Mineral Fertilizers (arable rotation since 1894). At both sites soil samples were taken from three fertilizer treatments: nil, inorganic fertilizers, animal manure. Spectra were obtained from whole soil samples and from the size fractions clay (<2 μrn), silt (2–20 μm) and, in some cases, sand (20–2000 μm). Comparison of the total strengths of the 13C–NMR signal for each size separate in relation to its total organic C content shows that clay, particularly, contains large percentages of C not detected by NMR because of the large magnetic susceptibilities of the soil minerals. It is proposed that the observed signals come from the more labile pools of soil organic matter (SOM), on the presumption that these pools are less closely associated with soil minerals and iron oxides and are likely to be less protected from microbial or enzymic decomposition. For both Rothamsted and Askov, functional groups in the 45–110 ppm region (N– and O–alkyls) dominate in the spectra for whole soils, with aromatics (110–160 ppm) and alkyls (0–45 ppm) signals being the next prominent. In the Askov whole soil samples 13C–NMR revealed no differences between nil, inorganic fertilizer and animal manure treatments but in the Rothamsted whole soil there were some small differences. Clay and silt fractions from Askov contain more alkyls and less aromatics than those from Rothamsted. For both sites clay in enriched in alkyls and depleted in aromatics relative to silt. Clay from Askov, but not Rothamsted, contains more N–alkyls (45–65 ppm) and less acetals (90–110 ppm) than silt. O–alkyls (65–90 ppm) account for more than 20% of the total signal in clay and silt from both sites. Fertilization regimes have not significantly affected the chemical composition of SOM associated with clay– and silt–sized fractions in the soils at either site. We conclude that the chemical composition of SOM is determined primarily by the interaction between the organisms responsible for decomposition and the mineral soil matrix rather than the nature of substrate input.  相似文献   

6.
Soil from Eutrochrept A horizons under long-term spruce forest (Sf), mixed deciduous forest (Df), permanent grassland (Gp) and arable rotation (Ar) was fractionated according to particle size and analysed for contents of C, N, lignin-derived phenols and carbohydrates. Whole soil from Sf, Df, Gp and Ar contained 84, 59, 73 and 25 g C kg?1 soil, respectively. For all sites, the C content declined and C/N ratio increased in the order: clay (<2 μm), silt (2–20 μm), sand (20–2000 μm). Clay and silt were significantly lower in C in Ar than in Sf, Df and Gp, C associated with sand being substantially lower under arable rotation. The yield of lignin-derived phenols decreased and carboxyl functionality and methoxyl demethylation of lignin derivatives increased with decreasing particle size, indicating a progressive lignin alteration. Whole soil from Sf and Gp was substantially higher in vanillyl (V), syringyl (S) and cinnamyl (C) units (VSC) than soil from Df and Ar. Compared to whole soil, clay was depleted and sand enriched in VSC. Only sand appeared to be affected significantly by land use. Sand from Ar and Df was more enriched in VSC than sand from Gp and Sf. Whole soil carbohydrates decreased in the order: Gp>Ar>Df>Sf. Sand- and clay-sized separates were enriched in carbohydrates compared to silt. Carbohydrates in sand were mainly of plant origin whereas microbially-derived sugars accounted for a larger proportion in the clay. Compared to Sf, Df and Gp, clay from Ar was enriched and sand depleted in microbial sugars. Lignin and carbohydrate distribution patterns indicate that organic matter was in a more advanced stage of decomposition in the sand separates from forest than from agricultural A horizons. The forest soils also show a higher degree of oxidative changes in lignin associated with clay. In contrast, differences between silt from the four A horizons were small.  相似文献   

7.
Four samples of soil organic matter and their humic acids, fulvic acids and humin were studied with solid-state 13CP MAS NMR. The whole soil samples were fractionated using NaOH and HCl in order to extract humic acids, fulvic acids and humin. This investigation indicates that conventional humus fractionation does not significantly change the content of different functional groups in soil.  相似文献   

8.
Since the concentration of free radicals in humic subtances increases at high pH the use of basic solutions for 13C NMR spectroscopy may cause broadening and loss of aromatic signals, with distortion of intensity distributions. No such effects were found in 13C spectra of soil humic and fulvic acid, an aquatic fulvic acid, and two phenolic polymers run in aqueous solutions at different pH values, and in dimethylsulphoxide. With increasing pH, the peak in the carboxyl region shifted in a manner consistent with greater dissociation of carboxyl and phenolic groups, and also certain features in the aliphatic and carboxyl regions were enhanced under some solution conditions. Elevated solution temperature (70°C) caused only slight improvement in the resolution of some lines. Chemical shifts were determined for some known phenolic and benzenecarboxylic acid compounds in DMSO and NaOD. The range for phenolic carbons extended to 173 ppm in NaOD, while some aromatic carbons occurred around 105 ppm, in the same region as anomeric carbons. Thus, even under quantitative acquisition conditions, relative areas may be used only to estimate proportions of different types of carbons and functional groups.  相似文献   

9.
The small organic matter content of mineral soils makes it difficult to obtain 13C and 15N nuclear magnetic resonance (NMR) spectra with acceptable signal-to-noise ratios. Subjecting such samples to hydrofluoric acid removes mineral matter and leads to a relative increase in organic material. The effect of treatment with 10% hydrofluoric acid on bulk chemical composition and resolution of solid-state 13C NMR spectra was investigated with six soils, some associated particle size fractions, plant litter and compost. The treatment enhanced the signal-to-noise ratio of the solid-state 13C NMR spectra. The improvement in spectrum quality was greatest in the clay fraction of soil contaminated with coal ash. The removal of paramagnetic compounds associated with the ash may be the main reason for the improvement. Based on total C, total N, C/N ratio and intensity distribution of the solid-state 13C NMR spectra, no changes in organic matter composition could be detected, except for a possible loss of carbohydrates. After treatment with HF, solid-state 15N NMR spectra of particle size fractions were obtained and indicated that the observable nitrogen is present mostly as peptides and free amino groups. Extraction with hydrofluoric acid is recommended as a routine treatment prior to solid-state 13C and 15N NMR on soil containing little C or N and soil samples containing paramagnetic compounds from natural or anthropogenic sources.  相似文献   

10.
Rock fragments in soil can contain significant amounts of organic carbon. We investigated the nature and dynamics of organic matter in rock fragments in the upper horizons of a forest soil derived from sandstone and compared them with the fine earth fraction (<2 mm). The organic C content and its distribution among humic, humin and non‐humic fractions, as well as the isotopic signatures (Δ14C and δ13C) of organic carbon and of CO2 produced during incubation of samples, all show that altered rock fragments contain a dynamic component of the carbon cycle. Rock fragments, especially the highly altered ones, contributed 4.5% to the total organic C content in the soil. The bulk organic matter in both fine earth and highly altered rock fragments in the A1 horizon contained significant amounts of recent C (bomb 14C), indicating that most of this C is cycled quickly in both fractions. In the A horizons, the mean residence times of humic substances from highly altered rock fragments were shorter than those of the humic substances isolated in the fine earth. Values of Δ14C of the CO2 produced during basal respiration confirmed the heterogeneity, complexity and dynamic nature of the organic matter of these rock fragments. The weak 14C signatures of humic substances from the slightly altered rock fragments confirmed the importance of weathering in establishing and improving the interactions between rock fragments and surrounding soil. The progressive enrichment in 13C from components with high‐14C (more recent) to low‐14C (older) indicated that biological activity occurred in both the fine and the coarse fractions. Hence the microflora utilizes energy sources contained in all the soil compartments, and rock fragments are chemically and biologically active in soil, where they form a continuum with the fine earth.  相似文献   

11.
Two hydrofluoric acid‐treated soils were prepared with water contents ranging up to 22% by exposing them to a range of atmospheric humidities. There was no effect of water content on the chemical shift distribution of nuclear magnetic resonance (NMR) signal in 13C cross‐polarization (CP) NMR spectra. The sensitivity of the 13C CP NMR spectra decreased slightly with increasing water content. Much of this decrease could be attributed to decreases in T1ρH relaxation rates, caused by enhanced molecular mobility of the organic matter in the presence of absorbed water. Rates of T1H relaxation were very sensitive to water content, and average T1H relaxation rates decreased four‐ to five‐fold from the smallest to the largest water content. Rates of T1H relaxation were non‐uniform, and were better modelled by two‐T1H component fits than one‐T1H component fits. The ratio of rapidly to slowly relaxing components increased with increasing water content. Proton spin relaxation editing (PSRE) subspectra revealed substantial changes in the nature of these two components with increasing water content. These results indicate the presence of an organic matter component that is very sensitive to water content, transforming from slowly relaxing at a small water content to rapidly relaxing at a greater water content. This component was shown to be rich in O–alkyl and carbonyl C, and may be hemicellulosic root exudates and microbial mucilages. The slowly relaxing PSRE component was a mixture of ligno‐cellulose and alkyl biopolymers, whereas the rapidly relaxing component was primarily charcoal for one of the soils, and was reminiscent of dissolved organic carbon for the other soil. These findings show that care must be taken in controlling water contents when using PSRE to study organic matter.  相似文献   

12.
13.
Humic acids were isolated from nine topsoils in New Zealand tussock grasslands. Cross-polarization 13C NMR spectra of solid samples were used to estimate fractions of carbon contained in different types of chemical functional groups. The degree of oxygen substitution of aromatic rings showed a strong negative correlation with soil development. Aromaticities greater than 0.25 were found in humic acids from only the two least-developed soils.  相似文献   

14.
We know much about the influence of management on stocks of organic matter in subtropical soils, yet little about the influence on the chemical composition. We therefore studied by CPMAS 13C NMR spectroscopy the composition of the above-ground plant tissue, of the organic matter of the whole soil and of silt- and clay-size fractions of the topsoil and subsoil of a subtropical Acrisol under grass and arable crops. Soil samples were collected from three no-till cropping systems (bare soil; oats−maize; pigeon pea + maize), each receiving 0 and 180 kg N ha−1 year−1, in a long-term field experiment. Soil under the original native grass was also sampled. The kind of arable crops and grass affected the composition of the particulate organic matter. There were no differences in the composition of the organic matter in silt- and clay-size fractions, or of the whole soil, among the arable systems. Changes were observed between land use: the soil of the grassland had larger alkyl and smaller aromatic C contents than did the arable soil. The small size fractions contain microbial products, and we think that the compositional difference in silt- and clay-size fractions between grassland and the arable land was induced by changes in the soil's microbial community and therefore in the quality of its biochemical products. The application of N did not affect the composition of the above-ground plant tissue nor of the particulate organic matter and silt-size fractions, but it did increase the alkyl C content in the clay-size fraction. In the subsoil, the silt-size fraction of all treatments contained large contents of aromatic C. Microscopic investigation confirmed that this derived from particles of charred material. The composition of organic matter in this soil is affected by land use, but not by variations in the arable crops grown.  相似文献   

15.
Organic soil samples with different vegetational background and others with variation in the degree of humification, were investigated with solid-state 13C NMR. This work indicates that the vegetational origin and degree of humification of the organic matter appear to influence the distribution of functional groups in organic soils considerably, but one year of decomposition under controlled laboratory conditions gave only small changes in the chemical composition.  相似文献   

16.
A series of humic and fulvic acids isolated from different sources, size‐fractions separated from a humic acid, and three soils of different origin were subjected to CPMAS 13C‐NMR spectroscopy to obtain the distribution of their carbon contents. The relative areas of chemical shift regions in NMR spectra were used to apply a principal component analysis (PCA) to the three sets of samples. The multivariate analysis was successful in efficiently differentiating samples on the basis of the quality of their organic carbon content. The PC biplots based on two principal components distinguished objectively among samples as accurately as it was possible to do by subjective qualitative evaluation of the original spectra. In the case of the soils, a discriminant analysis (DA) was applied to build a classification model that allowed the validation of the three soils according to their origin. Percentage of validation in the classification model is expected to increase when a large number of NMR spectra are accumulated and/or the concentration of organic carbon in samples is enhanced. The multivariate analyses described are likely to become a useful tool to increase the importance of CPMAS 13C‐NMR spectra in the appraisal of natural organic matter variations in heterogeneous natural systems.  相似文献   

17.
Rapid T1ρH relaxation and inefficient cross‐polarization have long been known to affect quantitation in solid‐state 13C cross‐polarization (CP) NMR spectra of soil organic matter. We have developed two new techniques to overcome these problems. The first, spin accounting, enables accurate gauging of how quantitative a spectrum is likely to be. The result is expressed as the percentage of potential NMR signal that can be accounted for (Cobs). Spin accounting improves on the established spin counting technique by correcting for rapid T1ρH relaxation and inefficient cross‐polarization. Spin accounting identifies three components: one that is well represented in CP spectra, one that is under‐represented in CP spectra due to rapid T1ρH relaxation, and one that is under‐represented in CP spectra due to inefficient cross‐polarization. For a range of eight de‐ashed soils, Cobs was in the range 83–106%, indicating that virtually all potential signal could be accounted for after correcting for rapid T1ρH relaxation and inefficient cross‐polarization. The second new technique, RESTORE (RE storation of S pectra via T CH and T O ne R ho (T1ρH) E diting), generates subspectra for the three components identified in spin accounting. The sum of the three RESTORE subspectra is essentially a corrected CP spectrum. The RESTORE spectra of all eight soils more closely resembled the corresponding, and presumably quantitative, Bloch decay spectra than did the CP spectra. RESTORE identifies the types of structures underestimated by CP, and the cause of their underestimation. Rapid T1ρH relaxation most affected carbonyl and carbohydrate carbons, whereas inefficient cross‐polarization most affected aromatic carbons.  相似文献   

18.
Organic matter mineralization of forest litter is catalysed by the action of different extracellular enzymes produced by microorganisms. Coupling enzyme activities with data on the general macromolecular structure of organic matter, provided by cross‐polarization magic angle spinning 13C nuclear magnetic resonance (13C CPMAS NMR), allows researchers new insights into organic matter degradation processes. In this paper, the effect of the temperature of incubation on the degradation processes was evaluated in three distinct layers (OhLn, OhLv and OhLf) of an evergreen oak litter (Quercus ilex L.), located in the Mediterranean area of south‐eastern France. We studied degradation phenomena by a combination of 13C CPMAS NMR and microbiological analysis. In order to determine the microbial activity of litter layers, three enzyme activities (laccase, cellulase and butyrate esterase) were measured in a 6‐month mesocosm study. Results showed an increase in the alkyl C to O‐alkyl‐C ratio and an increase of the phenolic C and carboxyl C regions, indicating a preferential degradation of polysaccharides. The aromaticity also increased with litter depth and degradation, and humification processes were more elevated at 30°C. anova showed significant effects (P < 0.001) of increased temperature, depth and time of degradation on microbiological variables. Further information is needed about the variations in temperature and temperature‐litter response and soil functions to link fundamental understanding of carbon stabilization, climate change and global C cycling.  相似文献   

19.
The relative contributions of sources of carbon in soils, such as throughfall, litter, roots, microbial decay products and stable organic fractions, to dissolved organic C are controversial. To identify the origin of dissolved organic C, we made use of a 4‐year experiment where spruce and beech, growing on an acidic loam and on a calcareous sand, were exposed to increased CO2 that was depleted in 13C. We traced the new C inputs from trees into dissolved organic C, into water‐extractable organic C, and into several particle‐size fractions. In addition, we incubated the labelled soils for 1 year and measured the production of dissolved organic C and CO2 from new and old soil C. In the soil solutions of the topsoil, the dissolved organic C contained only 5–10% new C from the trees. The δ13C values of dissolved organic C resembled those of C pools smaller than 50 µm, which strongly suggests that the major source of dissolved organic C was humified old C. Apparently, throughfall, fresh litter and roots made only minor contributions to dissolved organic C. Water‐extractable organic C contained significantly larger fractions of new C than did the natural dissolved organic C (25–30%). The δ13C values of the water‐extractable organic C were closely correlated with those of sand fractions, which consisted of little decomposed organic carbon. The different origin of dissolved and water‐extractable organic C was also reflected in a significantly larger molar UV absorptivity and a smaller natural 13C abundance of dissolved organic C. This implies that the sampling method strongly influences the characteristics and sources of dissolved organic C. Incubation of soils showed that new soil C was preferentially respired as CO2 and only a small fraction of new C was leached as dissolved organic C. Our results suggest that dissolved organic C is produced during incomplete decomposition of recalcitrant native C in the soils, whereas easily degradable new components are rapidly consumed by microbes and thus make only a minor contribution to the dissolved C fraction.  相似文献   

20.
We undertook what we believe to be a unique survey of the natural abundances of 13C and 15N in urban soils and plants in Karlsruhe (Germany), a European city of average size. We found broad patterns of these abundances in both soils and plants, which reflected geology and land use. In contrast with studies on smaller areas (showing the direct effect of human activities), our study first determined the extent to which the abundances correlated with land use or underlying geology and then assessed how we could further test such relationships. The spatial pattern of δ13C in surface soil correlated with that of the underlying parent material; construction activities superimposed a secondary signal. Maize cultivation was a source of less negative soil δ13C, whereas the C3 vegetation is a source of more negative soil δ13C. There was a footprint of less negative plant δ13C in the industrial and port areas; plant δ13C downwind of the city was less negative than upwind, which might relate to atmospheric pollution from the port area or to differences in soil properties. There was no significant effect of wind direction or geology on soil or plant δ15N, which was correlated mainly with land use. The largest soil δ15N was under agriculture and the smallest under woodland. The abundance of 15N in inner-urban soil and plants was intermediate between those of agriculture and forests. This study represents a major advance in the use of stable isotope geochemistry in understanding urban environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号