首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Common bacterial blight (CBB) in edible beans (Phaseolus vulgaris), incited Xanthomonas campestris pv. phaseoli, reduces bean yields and seed quality. The main objective of this study was to determine resistance to common bacterial blight in bean genotypes. Twenty-two bean genotypes grown in Turkey including common and snap bean cultivars/lines were collected from different parts of Turkey and tested for resistance against to Xanthomonas campestris pv. phaseoli strain MFD-11. All the common and snap bean lines/cultivars tested were moderately susceptible, susceptible or highly susceptible, except AG-7117 which was found resistant to Xanthomonas campestris pv. phaseoli. This is the first report of a resistance source in a common bean line (AG-7117) against Xanthomonas campestris pv. phaseoli.  相似文献   

2.
Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, the causal agents of the common and fuscous bacterial blight of beans, appear to be phenotypically identical except that the latter can produce a melanin-like pigment in culture. Ten isolates of X. campestris pv. phaseoli and 12 isolates of X. campestris pv. phaseoli var. fuscans were examined using pulsed-field gel electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP). The average genome sizes for X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were 3850.6±48.9 and 3584.3±68.1kb respectively. The genetic relatedness of the isolates was determined from macrorestriction patterns generated using XbaI. Cluster analysis indicated that the non-fuscous and fuscous strains are distinct. RFLP results, based on the highly conserved hrp genes and a pectate lyase gene from Xanthomonas, also indicated that the two bacteria are genetically different. The results obtained in this study suggest that this pathovar can be segregated into two subgroups under a recently proposed reclassification of the Xanthomonas genus.  相似文献   

3.
ABSTRACT Common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, is one of the most important diseases of common bean (Phaseolus vulgaris) in East Africa and other bean-growing regions. Xanthomonad-like bacteria associated with CBB in Malawi and Tanzania, East Africa, and in Wisconsin, U.S., were characterized based on brown pigment production, pathogenicity on common bean, detection with an X. campestris pv. phaseoli- or X. campestris pv. phaseoli var. fuscans-specific PCR primer pair, and repetitive element polymerase chain reaction (rep-PCR) and restriction fragment length polymorphism (RFLP) analyses. The common bean gene pool (Andean or Middle American) from which each strain was isolated also was determined. In Malawi, X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were isolated predominantly from Andean or Middle American beans, respectively. In Tanzania, X. campestris pv. phaseoli var. fuscans was most commonly isolated, irrespective of gene pool; whereas, in Wisconsin, only X. campestris pv. phaseoli was isolated from Andean red kidney beans. Three rep-PCR fingerprints were obtained for X. campestris pv. phaseoli strains; two were unique to East African strains, whereas the other was associated with strains collected from all other (mostly New World) locations. RFLP analyses with repetitive DNA probes revealed the same genetic diversity among X. campestris pv. phaseoli strains as did rep-PCR. These probes hybridized with only one or two fragments in the East African strains, but with multiple fragments in the other X. campestris pv. phaseoli strains. East African X. campestris pv. phaseoli strains were highly pathogenic on Andean beans, but were significantly less pathogenic on Middle American beans. In contrast, X. campestris pv. phaseoli strains from New World locations were highly pathogenic on beans of both gene pools. Together, these results indicate the existence of genetically and geographically distinct X. campestris pv. phaseoli genotypes. The rep-PCR fingerprints of X. campestris pv. phaseoli var. fuscans strains from East African and New World locations were indistinguishable, and were readily distinguished from those of X. campestris pv. phaseoli strains. Genetic diversity among X. campestris pv. phaseoli var. fuscans strains was revealed by RFLP analyses. East African and New World X. campestris pv. phaseoli var. fuscans strains were highly pathogenic on Andean and Middle American beans. Breeding for CBB resistance in East African beans should utilize X. campestris pv. phaseoli var. fuscans and New World X. campestris pv. phaseoli strains in order to identify germ plasm with the highest levels of resistance.  相似文献   

4.
Fifty-five strains of Xanthomonas axonopodis pv. vignicola, isolated from blight and pustule symptoms of cowpea leaves, originating from 11 countries, were characterized for their carbon-source metabolization pattern using the Biolog GN microplate system. Great variation was found between strains according to origin. Dextrin, glycogen and succinamic acid were not used by strains from Benin, Uganda or Thailand, but by all the other strains (excluding two strains from Mozambique), whereas N-acetyl-D-glucosamine and malonic acid were used by the strains from Benin, Uganda and Thailand, but generally not by the other strains. The strains from Benin, Uganda and Thailand, as well as strains from Venezuela, Brazil and Mozambique, clustered separately from the others in multivariate analysis. Nineteen substrates were used by all the strains, 47 not by any strain and 29 only by some strains. No considerable differences were found between strains isolated from blight symptoms and from pustules. Virulence of strains was not related to the metabolic pattern. The Biolog database was not representative of the diversity of X. axonopodis pv. vignicola, since all strains were identified as Xanthomonas campestris, although belonging to eight pathovars, while only eight of nine strains from Benin and both strains from Thailand were identified as X. campestris pv. vignicola. The Biolog system appeared to be useful for characterizing the diversity of X. axonopodis pv. vignicola strains. A set of representative strains based on metabolic and molecular diversity, virulence and geographic origin is suggested for screening for resistant cowpea cultivars.  相似文献   

5.
Nine cassava genotypes were grown for three years at six sites representing three agro-ecological zones in Nigeria to study their reaction to cassava bacterial blight (CBB), investigate genotype × environment (G × E) interaction patterns for their reaction to CBB, and to identify genotypes with stability to the disease, using the additive main effects and multiplicative interaction (AMMI) statistical model. Environments, genotypes and G × E interactions accounted for 71.8%, 12.0% and 16.2% of the treatment sums of squares (SS), and were highly significant (P<0.0001) for the disease, indicating that genotypes responded differentially to CBB infection across environments. Clones 30555, 91934, U/41044, and 4(2)1425 showed the least CBB disease ratings. Other clones showed erratic and fluctuating reactions to CBB from environment to environment and were thus considered unstable to the disease. CBB was most severe in 1989 (with a mean score of 2.46) and least so in 1990 (with a score of 2.06). The sites with the most disease were Ibadan, Ilorin and Ubiaja (1989), Ibadan and Ubiaja (1990) and Mokwa (1991). Because of the favourable conditions for disease development at those sites, they could be appropriate for screening cassava genotypes for CBB resistance. The AMMI model selected AMMI1 as the best predictor for CBB because it had the smallest actual root mean square prediction difference (0.37646), and explained 90.7% of the G × E interaction for CBB. The AMMI model was successful in selecting the genotypes 30555, U/41044 and 4(2)1425 and the environments Ibadan 1989, Ilorin 1989 and Onne 1990 with stability of reaction to the disease.  相似文献   

6.
ABSTRACT Common bacterial blight (CBB) disease of the common bean (Phaseolus vulgaris) is caused by Xanthomonas campestris pv. phaseoli and the brown-pigmented variant X. campestris pv. phaseoli var. fuscans. CBB first was described in Castilla y León County, Spain, in 1940, and is now a major constraint on common bean production. In this secondary center of diversity of the common bean, large-seeded Andean cultivars predominate, although medium-seeded Middle American cultivars also are grown. Xanthomonad-like bacteria associated with CBB in Castilla y León were characterized on the basis of carbohydrate metabolism, brown pigment production, genetic analyses (repetitive-element polymerase chain reaction [rep-PCR] and random amplified polymorphic DNA [RAPD]) and pathogenicity on cultivars representing the two common bean gene pools (Andean and Middle American). X. campestris pv. phaseoli was more prevalent (80%) than X. campestris pv. phaseoli var. fuscans (20%). Patterns of carbohydrate metabolism of Spanish CBB bacteria were similar to those of known strains; and only X. campestris pv. phaseoli var. fuscans strains utilized mannitol as a sole carbon source. rep-PCR and RAPD analyses revealed relatively little genetic diversity among Spanish X. campestris pv. phaseoli strains, and these strains were placed together with New World strains into a large cluster. Similar to other New World strains, representative Spanish X. campestris pv. phaseoli strains were highly pathogenic on bean cultivars of both gene pools, showing no gene pool specialization such as that found in certain East African strains. Genetic analyses and pathogenicity tests confirmed and extended previous results, indicating that these East African strains represent distinct xanthomonads that independently evolved to be pathogenic on common bean. X. campestris pv. phaseoli var. fuscans strains were more closely related and genetically distinct from X. campestris pv. phaseoli strains. However, two distinct clusters of X. campestris pv. phaseoli var. fuscans strains were identified, one having the most New World strains and the other having the most African strains. Spanish strains were placed in both clusters, but all strains tested were highly pathogenic on bean cultivars of both gene pools. Together, our results are consistent with multiple introductions of CBB bacteria into Spain. These findings are discussed in terms of breeding for CBB resistance and the overall understanding of the genetic diversity and evolution of CBB bacteria.  相似文献   

7.
Bacterial blight, caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad), is a major threat to the anthurium cut flower industry worldwide. Two field trials in Hawaii evaluated the long-term persistence of Xad in artificially-infested crop residues. Xad survived in leaf, petiole, and root residues for as long as 4 months when tissues were left on the surface or buried 15cm deep. Survival was considerably shorter (approximately 20 days) outside of residues. Xad that was recovered from residues over a period of 4 months retained pathogenicity. Xad was isolated from living roots of naturally-infected plants which further suggests that roots left in the field after culling may be particularly important, but overlooked, inoculum source. This information is key to determining minimum fallow periods before replanting devastated fields.  相似文献   

8.
Investigations on the efficacy of various methods of managing root-knot nematodes in microplots and under field conditions revealed that soil solarization, Furadan 5G and Tagetes erecta applied separately or in combination with other control methods, were the most effective in reducing the numbers of three root-knot nematodes, and root gall and egg mass indices. These management methods also resulted in significant increases (P0.05) in number of pods per plant, number of seeds per pod and 100-seed weight, and increased seed yield by up to 96.7 percent. Farmyard manure and Crotalaria ochroleuca were the least effective treatments. The use of T. erecta was the most economical root-knot nematode control method.  相似文献   

9.
Biological control efficiency of an antagonistic, endophytic strain of Bacillus subtilis (strain BB) was evaluated against three strains of the black rot pathogen, Xanthomonas campestris pv. campestris (Xcc), in four Brassica crops (cabbage, cauliflower, rape and broccoli) grown during three consecutive growing seasons and on two soil types, in two different areas in Zimbabwe. Strain BB controlled the disease caused by strain Xcc B-147 in all Brassica crops during the dry and short rainy seasons. A similar effect was observed in cabbage using the strain Xcc 33908. Biological control was effective in broccoli, but not in cabbage and rape during the main rainy season in clay loam soil and limited biological control effect was still observed when these crops were grown in sandy loam soil. The endophytic colonisation of cabbage roots by strain BB was confirmed by immuno-blotting during the whole growing season. Biological control of black rot with strain BB is discussed in relation to its effect on Xcc strains, Brassica crops and to the effect of weather and soil conditions.  相似文献   

10.
A bacterium was isolated from superficial bark necroses on young poplars and its pathogenicity demonstrated by inoculation experiments. The organism was identified asXanthomonas campestris. Cross-inoculations showed that a previously undescribed pathovar was involved. It is suggested to designate this organismX. campestris pv.populi.Samenvatting Uit een oppervlakkige bastnecrose bij jonge populieren werd massaal een bepaalde bacterie geïsoleerd. Met deze bacterie werden gezonde populieren in het veld geïnoculeerd via verwonding van de bast. Als gevolg van de inoculaties ontwikkelden zich bij ongeveer 40% van de geïnoculeerde bomen hetzelfde type bastnecrosen, terwijl bij de controleplanten geen enkele reactie optrad. Uit de kunstmatig verkregen necrosen werd dezelfde bacterie geïsoleerd.Identificatie met biochemische en serologische methoden toonde aan dat de bacterieXanthomonas campestris was.Vervolgens werden in de kas kruisinoculaties uitgevoerd met verschillende xanthomonaden op populier, wilg, kool en geranium. DeX. campestris isolaten uit populier tastten behalve populier ook wilg aan. De andere gebruikte stammen waren waardplant-specifiek, al bleven sommigen ervan minstens acht maanden in leven in een niet-waardplant, evenwel zonder symptomen te veroorzaken. Geconcludeerd wordt, dat de bastnecrosen zijn veroorzaakt door een nog niet beschreven pathovar vanX. campestris. Voorgesteld wordt om deze bacterieXanthomonas campestris pv.populi te noemen.  相似文献   

11.
Kocks  Zadoks  & Ruissen 《Plant pathology》1999,48(2):176-188
The effects of initial inoculum levels on spatio-temporal development in black rot of cabbage from artificial sources, one per plot, were evaluated in replicated field experiments. The results support the hypothesis that black rot is a polycyclic disease. Its development was inoculum-dependent because the progress rate of epidemics and spatial spread were both positively correlated with the strength of the source. Fast disease development was related to the number of rain days. The spread of black rot, associated with the primary gradient, at first resulted from allo-infection, later followed by a phase during which allo-infection was complemented by auto-infection. Three-dimensional maps of disease severity showed the dominance of the primary focus. Maximum distance of black rot symptoms from the source of the focus was limited to a few metres so that damage to cabbage by focal inoculum was limited to the plants close to the source. Spatio-temporal development and initial inoculum were related. High inoculum levels in point sources resulted in faster outward spread of black rot, and differences between low and high levels were generally significant. Under the conditions of the experiments, performed during three relatively dry seasons, a single source of infection measuring 0.5 × 0.5 m was not capable of spreading disease over all the plants in a plot of 6.5 × 6.5 m. The results imply that severe disease where whole crops are infected, as observed regularly in The Netherlands, can only originate from a large number of small foci per field.  相似文献   

12.
Bacterial strains isolated from cankers of wild cherry trees (Prunus avium) in France were characterized using numerical taxonomy of biochemical tests, DNA–DNA hybridization, repeat sequence primed-PCR (rep-PCR) based on REP, ERIC and BOX sequences, heteroduplex mobility assay (HMA) of internal transcribed spacer (ITS) as well as pathogenicity on wild cherry trees and other species of Prunus. They were compared to reference strains of Pseudomonas syringae pathovars isolated from wild and sweet cherry and various host plants. Wild cherry strains were closely related to P. syringae (sensu lato) in LOPAT group Ia (+ - - - +). Wild cherry strains were pathogenic to wild cherry trees and produced symptoms similar to those observed in orchards. They were pathogenic also, but at a lesser extent, to sweet cherry trees (cv. Napoléon). The wild cherry strains were collected from five different areas in France and appeared to constitute a very homogeneous group. They showed an homogenous profile of a biochemical and physiological characteristics. They were closely related by DNA–DNA hybridization and belonged to genomospecies 3 `tomato'. Rep-PCR showed that wild cherry strains constitute a tight group distinct from P. s. pv. morsprunorum races 1 and 2 and from other P. syringae pathovars. HMA profiles indicated that the ITS of all wild cherry strains were identical but different from P. s. pv. persicae strains since the two heteroduplex bands with reduced mobility were generated by hybridization with the P. s. pv. persicae pathotype strain CFBP 1573. The 8 genomospecies of Gardan et al. (1999) have not been converted into formal species as they cannot be differentiated by biochemical tests. Therefore, the pathovar system within P. syringae was currently used. P. syringae pv. avii is proposed for this bacterium causing a wild cherry bacterial canker and strain CFBP 3846 (NCPPB 4290, ICMP 14479) is designated as the pathotype.  相似文献   

13.
Surface and internal populations of Xanthomonas campestris pv. phaseoli, causal agent of common bacterial blight of bean, on and in flower buds, blossoms and pods of seven bean (Phaseolus vulgaris) genotypes were studied. Bean plants were grown in the field and artificially inoculated at the seedling stage (18 days old). The pathogen was recovered in high numbers from flower buds, blossoms, pods and seed of both resistant and susceptible bean genotypes. Significant differences (P = 0.05) in population levels of X. c. pv. phaseoli between stages of reproductive tissue development were observed. Infected seed from resistant bean genotypes had no visible symptoms. Such seed may play an important role in the epidemiology of common bacterial blight because they are difficult to detect and may occur at low frequency in seed lots, as was the case in the current study.  相似文献   

14.
The effects of inoculum load and watering regime on the transmission of Xanthomonas campestris pv. campestris from seed to seedlings of cauliflower were investigated. Seed, inoculated with different concentrations of bacteria, was sown in commercial module trays and subjected to four different watering regimes: high frequency overhead spray, low frequency overhead spray, high frequency capillary and low frequency capillary. Visible symptoms were recorded and leaf washings were carried out to detect the pathogen on symptomless plants. The effects of treatments on symptoms and on the proportion of contaminated but symptomless plants was similar. Initially, they were influenced only by the dose of bacteria with little difference between the watering regimes, but later the proportion of plants with symptoms was greater for plants subjected to overhead watering, due to spread and secondary infection. Generalised linear models were fitted to the data relating the proportion of symptomless contaminated plants or the proportion of plants with symptoms, p, to the mean dose of bacteria per seed, d, and the number of overhead waterings, noh. The equations were: p=1–exp(–0.014·d 0.32·noh 0.045) for symptomless contaminated/infected plants and p=1–exp(–0.0056·d 0.44·noh 0.014) for plants with symptoms. These models indicated that the one-hit probability for transmission of the pathogen (i.e. with/without visible symptoms) was 0.014 and for infection (i.e. with visible symptoms) was 0.0056.  相似文献   

15.
A study was conducted to determine the identity and prevalence of viruses in 455 greenhouses in the main Spanish green bean growing area. Directed surveys were conducted in 422 crops from 2000–2004 to collect samples from diseased plants displaying symptoms that could be attributed to viruses. The samples were analysed to detect any virus by means of dsRNA extraction, mechanical inoculation to test plants, as well as ELISA and/or RT-PCR tests to detect potyviruses, geminiviruses and viruses previously known to infect beans in Spain. Random surveys were conducted in the years 2002 and 2005 (in 21 and 12 greenhouses, respectively) to study the actual incidence of known viruses in the area. Symptoms were recorded in 23,108 plants from which 664 plants were collected and analysed by ELISA or RT-PCR. The results of the directed surveys showed that all the analyzed crops carried the cryptic virus Phaseolus vulgaris endornavirus (PVuV), whereas phytopathogenic viruses appeared in smaller percentages of the crops: Tomato yellow leaf curl virus (TYLCV) 20.4%, Southern bean mosaic virus (SBMV) 9.0%, Tomato spotted wilt virus (TSWV) 4.0%, and the new species Bean yellow disorder virus (BnYDV) that broke out in 2004 with occurrence values higher than 34.3% that year. From 2000–2004 an important decrease in TYLCV was observed, along with a slight increase in SBMV and a consistently low occurrence of TSWV. The results of the random surveys confirmed the increased occurrence of virus detected during the directed surveys, and furthermore demonstrated the percentage of incidence for each virus.  相似文献   

16.
The correlation between immunofluorescence microscopy (IF) and dilution-plating on nutrient starch cycloheximide agar (NSCA) or NSCA with the addition of nitrofurantoin and vancomycin (NSCAA) was studied for the detection ofXanthomonas campestris pv.campestris (Xcc) in crucifer seeds. When checking 50 l of the seed extract in IF, IF and dilution-plating gave corresponding results (both positive or negative) for 45.4–56.4% of the samples tested. No differences were observed in this respect between tests using a polyclonal antiserum (PCA 94) and replicate tests using monoclonal antibodies (MCA 20H6). When 20 l of the seed extract was checked in IF, 67.3–71.3% of the samples tested were both positive or negative with dilutionplating and IF. IF negative and dilution-plating positive samples were found for 0.0–7.3% of all samples tested. The percentage of IF positive and dilution-plating negative samples ranged from 26.7–29.2 (20 l seed extract checked) to 41.8–47.3% (50 l seed extract checked). Generally, the probability of isolating Xcc increased with increasing numbers of fluorescent cells found in IF. Above 10 000 cells per ml the probability of isolating Xcc ranged from 57.1–81.8%. Increasing the extraction time from 5 min to 2.5 h shaking showed no significant increase of the number of samples found positive in IF and dilution-plating. However, when using both 5 min and 2.5 h shaking as compared to 5 min shaking only, more samples can be found positive in IF (1.0–14.5%) and dilution-plating (3.0–18.5%). Examining 1 l instead of 50 l of the sample smear, would increase the correspondence between IF and dilution-plating results up to minimally 69.1% (MCA 20H6). However, the risk of false-negative results in IF as compared to dilution-plating would also increase.  相似文献   

17.
During the last two decades bacterial strains associated with necrotic leaf spots of pepper and tomato fruit spots were collected in Serbia. Twenty-eight strains isolated from pepper and six from tomato were characterized. A study of their physiological and pathological characteristics, and fatty acid composition analysis revealed that all of the strains belong to Xanthomonas campestris pv. vesicatoria. Being non-amylolytic and non-pectolytic, pathogenic on pepper but not on tomato, containing lower amounts of fatty acid 15 : 0 ante–iso, the pepper strains were designated as members of the A group of X. campestris pv. vesicatoria. However, the tomato strains hydrolyzed starch and pectate, caused compatible reactions on tomato but not on pepper, had higher percent of 15 : 0 ante–iso fatty acid, and were classified into B phenotypic group and identified as X. vesicatoria. PCR primers were developed which amplified conserved DNA regions related to the hrp genes of different strains of X. campestris pv. vesicatoria associated with pepper and tomato. Restriction analysis of the PCR product resulted in different patterns and enabled grouping of the strains into four groups. When xanthomonads isolated from pepper and tomato in Serbia were analyzed, they clustered into two groups corresponding to the grouping based on their physiological and pathological characteristics. According to the reaction of pepper and tomato differential varieties, the strains from pepper belong to races P7 and P8 and tomato strains belong to the race T2. All strains were sensitive to copper and streptomycin. Advantages and disadvantages of various bacterial spot management practices are discussed.  相似文献   

18.
19.
The pathogenic races of 450 cultures of Xanthomonas oryzae pv. oryzae, isolated from eight locations in the inland mountainous area of Hiroshima Prefecture during 2000 to 2003, were determined with a set of Japanese differentials. The rice cultivars infected with the bacterium are thought to be in the Kinmaze group, which does not have any resistance genes. Five Japanese races IA, IB, II, V, and VII occurred across the area, although the composition of the races in each location altered during the surveyed 4 years.  相似文献   

20.
Inoculation of tomato seeds with the plant growth-promoting bacterium Azospirillum brasilense, or spraying tomato foliage with A. brasilense, streptomycin sulfate, or commercial copper bactericides, separately, before or after inoculation with Pseudomonas syringae pv. tomato, the casual agent of bacterial speck of tomato, had no lasting effect on disease severity or on plant height and dry weight. Seed inoculation with A. brasilense combined with a single streptomycin foliar treatment and two foliar bactericide applications at 5-day intervals (a third or less of the recommended commercial dose) reduced disease severity in tomato seedlings by over 90% after 4 weeks, and significantly slowed disease development under mist conditions. A. brasilense did not induce significant systemic resistance against the pathogen although the level of salicylic acid increased in inoculated plants. Treatment of tomato seeds that were artificially inoculated with P. syringae pv. tomato, with a combination of mild chemo-thermal treatment, A. brasilense seed inoculation, and later, a single foliar application of a copper bactericide, nearly eliminated bacterial leaf speck even when the plants were grown under mist for 6 weeks. This study shows that a combination of otherwise ineffective disease management tactics, when applied in concert, can reduce bacterial speck intensity in tomatoes under mist conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号