首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对利用植物病害叶片图像特征识别病害类别的复杂性,提出一种基于特征融合与局部判别映射的植物叶部病害识别方法。首先,在中心对称局部二值模式(CS-LBP)的基础上,设计了一种自适应中心对称局部二值模式(ACS-LBP),由此分割病害叶片的病斑图像;然后提取并融合病斑图像的纹理、形状和颜色特征;再利用局部判别映射算法对融合特征进行维数约简;最后利用支持向量机进行病害类别分类。在3种常见苹果病害叶片图像数据库上进行病害识别验证试验,结果表明,该方法能够有效识别苹果叶部病害,平均识别率高达96%以上。  相似文献   

2.
为了克服苹果颜色分级中存在的误差大等缺点,提出了一种新颖的智能分级方法.设计了基于支持向量机的苹果颜色分级系统,即利用计算机视觉技术获取苹果表面颜色的色度作为颜色特征;依据支持向量机理论,选取径向基函数作为核函数,采用"一对多"的方法构造多类分类机;将苹果的色度特征作为分类机的输入样本,对苹果进行分级.对大量样本进行分级仿真试验,结果表明,该方法分级正确率很高.将支持向量机应用于苹果颜色分级切实可行且效果显著.  相似文献   

3.
邵彧  张善文  李萍 《吉林农业科学》2021,46(4):113-118,134
通过维数约简实现特征提取是图像识别的一个重要步骤.由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病害识别.本文在判别局部保持投影(Discriminant Locality Preserving Projections,DLPP)的基础上,提出一种基于DLPP的苹果叶部病害识别方法.首先利用GrabCut算法对采集的病害叶部图像进行背景分割,然后利用分水岭算法对去背景图像进行分割,得到病斑图像;再利用DLPP将病斑图像投影到低维判别空间,得到分类特征;最后利用K-最近邻分类器进行病害类别识别.在实际苹果病害叶片图像数据库上的实验结果表明,该方法是有效可行的.  相似文献   

4.
作物病害是影响作物产量和质量的重要因素,如何进行病斑的准确提取是后期病害识别的一个关键步骤。为了提高复杂环境下病斑提取的准确率,提出一种基于叶片颜色的病斑提取方法,利用叶片正常部位和病害部位的颜色信息的不同,进行基于支持向量机的分割处理,从而得到很好的分割效果,然后对得到的图像进行最大类间差法处理,完成病斑的提取。结果表明,该方法具有有效性。  相似文献   

5.
该文提出一种基于边界支持向量的自适应增量支持向量机,对每轮训练的样本集提取其边界支持向量,从而减少训练向量数目,提高训练效率。通过自适应调整参数,可以更好地适应新增样本。采用 UCI(University of California Irvine)机器学习数据库和Statlog数据库对本文方法进行验证,实验结果表明本文方法的训练时间优于标准支持向量机和一般增量支持向量机。其分类精度也明显优于一般增量支持向量机,在训练数据较少时,其分类精度与标准支持向量机相差不大,但随着训练数据的增加,分类精度逐渐超越标准支持向量机。该文的方法更适合大规模数据集的增量学习。  相似文献   

6.
支持向量机在粮食产量预测中的应用   总被引:3,自引:1,他引:3  
将支持向量机算法应用于粮食产量预测,结果表明,支持向量机的径向基核函数模型预测粮食产量的精度优于其他预测方法。  相似文献   

7.
基于纹理特征和支持向量机的玉米病害的识别   总被引:4,自引:0,他引:4  
针对玉米病害叶片彩色纹理图像的特点,提出一种将支持向量机和色度矩分析应用于玉米病害识别的方法。首先利用色度矩提取玉米病害叶片纹理图像的特征向量,然后将支持向量机分类方法应用于病害的识别。玉米病害纹理图像识别实验结果表明:支持向量机分类方法对于病害分类训练样本较少时,具有良好的分类能力和泛化能力,适合于玉米病害的分类。不同分类核函数的相互比较分析表明,径向基核函数最适合于玉米病害的分类识别。  相似文献   

8.
以EO-1 Hyperion高光谱遥感数据为基础,对其进行大气校正、几何校正、滤波等处理,采用支持向量机分类方法对其进行分类,选择不同的核函数,主要有线性核、多项式核、径向基核、Sigmoid核,其余采用相同参数设置,进而比较不同核函数在EO-1 Hyperion数据分类中的效果。结果表明,采用支持向量机方法对研究区域的EO-1 Hyperion遥感数据进行分类,采用不同的核函数对分类结果影响不大。  相似文献   

9.
[目的]探索基于形状特征和支持向量机(SVM)的茶叶病害识别方法,为茶叶病害的智能准确识别提供技术支撑.[方法]采集贵州铜仁茶区茶炭疽病、茶饼病、茶白星病的病斑图像,使用MATLAB提取并计算3种病害的病斑面积、周长、外接矩形和外接椭圆面积、复杂性、伸长度、矩形度、圆度、面积凹凸比8种形状特征值,分别建立基于单一形状特...  相似文献   

10.
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次.主要利用1958-2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用.  相似文献   

11.
刘婷婷 《安徽农业科学》2011,39(28):17580-17582,17732
[目的]研究支持向量机对纹枯病病害进行自动识别,弥补人工识别的缺陷和不足,提高识别的准确性和效率。[方法]以水稻纹枯病为研究对象,使用基于矢量中值滤波的方法对水稻纹枯病图像进行预处理。利用模糊C均值聚类法,在图像分割阶段进行灰度图像分割;分别从颜色、纹理和形状3个方面提取代表病斑的特征参数。最后用支持向量机识别方法进行水稻纹枯病识别,并与基于BP神经网络的识别方法进行对比。[结果]识别率达到95.00%,要优于BP神经网络的91.88%。[结论]基于支持向量机的水稻纹枯病识别弥补了人工识别的缺陷,也提高了准确性和效率,有广阔的应用前景。  相似文献   

12.
杨枢  郭茂龙 《安徽农业科学》2010,38(21):11506-11507,11547
提出一种温室环境智能控制模型。该模型从模式识别的角度解决温室环境最优控制问题。具体算法是根据作物生长模型、当前外界环境条件等,创建温室环境控制目标;对控制目标与温室内外环境条件的差值等特征参数模糊化;通过支持向量机的多分类方法进行分类决策,选择适宜的温室环境调控措施,达到对温室环境最优控制的目的。将采用该模型的温室环境控制系统应用于安徽蚌埠地区的Venlo温室。结果表明,该系统具有良好的控制效果。  相似文献   

13.
提出了一种基于免疫支持向量机人脸识别方法。针对支持向量机学习是一种有导师的学习,引入了否定算法,把人脸特征否定的结果来供支持向量机学习。该算法大大降低了运算复杂度,试验结果表明,该算法与其它方法相比具有较高的识别率。  相似文献   

14.
提出了一种基于支持向量机(Support Vector Machine,SVM)的个性图像检索方法,首先融合符合用户需求的图像的物理特征构造SVM分类器,然后把获得的图像信息提交给分类器进行识别,最后把检索结果返回给用户.实验结果表明,用SVM作为学习机器可以实现对图像的检索分类.  相似文献   

15.
为实现通过自动化手段进行花生品种真伪的鉴定,通过扫描仪采集了花生荚果侧面的图像,花生共20个品种,每个品种50个花生荚果,对采集的每幅图像提取形态、颜色、纹理方面的50个特征,首先通过主分量分析(PCA)对这些特征进行组合优化,然后采用RBF核函数搭建了支持向量机模型,最后通过网格搜索法、基因算法和粒子群方法优化支持向量机模型的惩罚参数c与gamma参数。优化结果表明,在主成分累积贡献率为95%时,PCA是10个主分量,3种参数优化方案中20个品种的5折交叉验证识别率分别为78.6%、77.6%、78.0%,识别效果相当,花生品种真伪的二分类识别率最高达到95%。优化后该模型对品种真伪的识别已经基本可以推广到实际生产中使用。  相似文献   

16.
胡全  王霓虹  邱兆文 《安徽农业科学》2014,(12):3688-3689,3699
针对森林火场采用了新的颜色特征提取方法,融合图像的颜色和纹理特征作为图像的特征向量,并用支持向量机作为学习工具,充分利用已有森林火场的数据进行学习,提高森林火场的自动识别的准确率.结果表明,新的颜色特征提取方法适用于森林火场的识别,采用支持向量机融合多特征可成功用于森林火场的自动识别.  相似文献   

17.
基于双编码遗传算法的支持向量机作物病害图像识别方法   总被引:1,自引:0,他引:1  
为了实现作物病害的计算机识别,采用基于双编码遗传特征选择的支持向量机和病害图像多特征参数识别病害的方法,对病害图像增强处理,彩色病斑分割,特征参数提取,构建双编码遗传算法优化特征子集,并赋予权重的一对一投票策略支持向量机来分类识别作物病害进行研究.结果表明:在同等条件下,该方法与没有采用遗传算法的支持向量机相比,特征向量减少了38%,正确率提高了6.29%.  相似文献   

18.
谈蓉蓉 《安徽农业科学》2010,38(26):14756-14757
提出了利用支持向量机(SVM)分类的方法对采集图像进行识别。采用计算机图像处理技术针对棉花苗期杂草图像进行分割,提取棉花与杂草的形状特征参数;选取最有效的特征数据组合输入SVM进行分类学习训练,实现杂草的有效识别。结果表明,使用该方法获得的图像识别效率较高,在同等条件下,速度优于人工神经网络。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号