共查询到18条相似文献,搜索用时 78 毫秒
1.
针对利用植物病害叶片图像特征识别病害类别的复杂性,提出一种基于特征融合与局部判别映射的植物叶部病害识别方法。首先,在中心对称局部二值模式(CS-LBP)的基础上,设计了一种自适应中心对称局部二值模式(ACS-LBP),由此分割病害叶片的病斑图像;然后提取并融合病斑图像的纹理、形状和颜色特征;再利用局部判别映射算法对融合特征进行维数约简;最后利用支持向量机进行病害类别分类。在3种常见苹果病害叶片图像数据库上进行病害识别验证试验,结果表明,该方法能够有效识别苹果叶部病害,平均识别率高达96%以上。 相似文献
2.
3.
通过维数约简实现特征提取是图像识别的一个重要步骤.由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病害识别.本文在判别局部保持投影(Discriminant Locality Preserving Projections,DLPP)的基础上,提出一种基于DLPP的苹果叶部病害识别方法.首先利用GrabCut算法对采集的病害叶部图像进行背景分割,然后利用分水岭算法对去背景图像进行分割,得到病斑图像;再利用DLPP将病斑图像投影到低维判别空间,得到分类特征;最后利用K-最近邻分类器进行病害类别识别.在实际苹果病害叶片图像数据库上的实验结果表明,该方法是有效可行的. 相似文献
4.
5.
廖文婧 《西南大学学报(自然科学版)》2014,36(5)
该文提出一种基于边界支持向量的自适应增量支持向量机,对每轮训练的样本集提取其边界支持向量,从而减少训练向量数目,提高训练效率。通过自适应调整参数,可以更好地适应新增样本。采用 UCI(University of California Irvine)机器学习数据库和Statlog数据库对本文方法进行验证,实验结果表明本文方法的训练时间优于标准支持向量机和一般增量支持向量机。其分类精度也明显优于一般增量支持向量机,在训练数据较少时,其分类精度与标准支持向量机相差不大,但随着训练数据的增加,分类精度逐渐超越标准支持向量机。该文的方法更适合大规模数据集的增量学习。 相似文献
6.
7.
基于纹理特征和支持向量机的玉米病害的识别 总被引:4,自引:0,他引:4
针对玉米病害叶片彩色纹理图像的特点,提出一种将支持向量机和色度矩分析应用于玉米病害识别的方法。首先利用色度矩提取玉米病害叶片纹理图像的特征向量,然后将支持向量机分类方法应用于病害的识别。玉米病害纹理图像识别实验结果表明:支持向量机分类方法对于病害分类训练样本较少时,具有良好的分类能力和泛化能力,适合于玉米病害的分类。不同分类核函数的相互比较分析表明,径向基核函数最适合于玉米病害的分类识别。 相似文献
8.
9.
10.
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次.主要利用1958-2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用. 相似文献
11.
[目的]研究支持向量机对纹枯病病害进行自动识别,弥补人工识别的缺陷和不足,提高识别的准确性和效率。[方法]以水稻纹枯病为研究对象,使用基于矢量中值滤波的方法对水稻纹枯病图像进行预处理。利用模糊C均值聚类法,在图像分割阶段进行灰度图像分割;分别从颜色、纹理和形状3个方面提取代表病斑的特征参数。最后用支持向量机识别方法进行水稻纹枯病识别,并与基于BP神经网络的识别方法进行对比。[结果]识别率达到95.00%,要优于BP神经网络的91.88%。[结论]基于支持向量机的水稻纹枯病识别弥补了人工识别的缺陷,也提高了准确性和效率,有广阔的应用前景。 相似文献
12.
提出一种温室环境智能控制模型。该模型从模式识别的角度解决温室环境最优控制问题。具体算法是根据作物生长模型、当前外界环境条件等,创建温室环境控制目标;对控制目标与温室内外环境条件的差值等特征参数模糊化;通过支持向量机的多分类方法进行分类决策,选择适宜的温室环境调控措施,达到对温室环境最优控制的目的。将采用该模型的温室环境控制系统应用于安徽蚌埠地区的Venlo温室。结果表明,该系统具有良好的控制效果。 相似文献
13.
14.
提出了一种基于支持向量机(Support Vector Machine,SVM)的个性图像检索方法,首先融合符合用户需求的图像的物理特征构造SVM分类器,然后把获得的图像信息提交给分类器进行识别,最后把检索结果返回给用户.实验结果表明,用SVM作为学习机器可以实现对图像的检索分类. 相似文献
15.
为实现通过自动化手段进行花生品种真伪的鉴定,通过扫描仪采集了花生荚果侧面的图像,花生共20个品种,每个品种50个花生荚果,对采集的每幅图像提取形态、颜色、纹理方面的50个特征,首先通过主分量分析(PCA)对这些特征进行组合优化,然后采用RBF核函数搭建了支持向量机模型,最后通过网格搜索法、基因算法和粒子群方法优化支持向量机模型的惩罚参数c与gamma参数。优化结果表明,在主成分累积贡献率为95%时,PCA是10个主分量,3种参数优化方案中20个品种的5折交叉验证识别率分别为78.6%、77.6%、78.0%,识别效果相当,花生品种真伪的二分类识别率最高达到95%。优化后该模型对品种真伪的识别已经基本可以推广到实际生产中使用。 相似文献
16.
17.
基于双编码遗传算法的支持向量机作物病害图像识别方法 总被引:1,自引:0,他引:1
为了实现作物病害的计算机识别,采用基于双编码遗传特征选择的支持向量机和病害图像多特征参数识别病害的方法,对病害图像增强处理,彩色病斑分割,特征参数提取,构建双编码遗传算法优化特征子集,并赋予权重的一对一投票策略支持向量机来分类识别作物病害进行研究.结果表明:在同等条件下,该方法与没有采用遗传算法的支持向量机相比,特征向量减少了38%,正确率提高了6.29%. 相似文献
18.
提出了利用支持向量机(SVM)分类的方法对采集图像进行识别。采用计算机图像处理技术针对棉花苗期杂草图像进行分割,提取棉花与杂草的形状特征参数;选取最有效的特征数据组合输入SVM进行分类学习训练,实现杂草的有效识别。结果表明,使用该方法获得的图像识别效率较高,在同等条件下,速度优于人工神经网络。 相似文献