首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reverse-phase liquid chromatographic (LC) method is described for simultaneously determining 5 coccidiostats--aklomide, dinsed, ethopabate, nitromide, and zoalene in chicken liver. The method entails blender extraction of 10 g liver with ethyl acetate, column chromatography through Sephadex LH-20 and neutral alumina, and LC analysis on a C18 column with UV detection at 260 nm. The drugs were eluted from Sephadex with methanol-benzene (10 + 90), from alumina with methanol-dichloromethane (10 + 90), and from C18 with acetonitrile-water (linear gradient: 25% acetonitrile for 10 min, increasing to 55% over 15 min; flow rate 1 mL/min). Liquid chromatography was completed in 40 min and calculations were based on peak height measurements. Average recoveries of the coccidiostats from fortified liver ranged from 72 to 97%, except for dinsed, which showed a relatively constant average recovery of 57%. The detection limit for the standards was 2.5 ng on column. Levels as low as 50 ng/g were detected in fortified liver samples.  相似文献   

2.
A liquid chromatographic (LC) method is described for determination of spiramycin residues in chicken muscles. The drug is extracted from muscles with acetonitrile, the extract is concentrated to 3-4 mL and rinsed with n-hexane followed by ethyl ether, and the drug is extracted with chloroform. LC analysis is carried out on a Zorbax BP-C8 column, and spiramycin is detected spectrophotometrically at 231 nm. Recoveries of spiramycin added to chicken muscles at 0.2 and 0.1 ppm were 93.9 and 89.0%, respectively. The detection limit was 5 ng for spiramycin standard, and 0.05 ppm in chicken muscles.  相似文献   

3.
A liquid chromatographic (LC) method is described for determination of olaquindox residues in swine tissues. The drug is extracted from tissues with acetonitrile, and the extract is evaporated to dryness. This residue is cleaned up by alumina column chromatography. LC analysis is carried out on a Nucleosil C18 column, and olaquindox is quantitated by ultraviolet detection at 350 nm. The average recoveries of olaquindox added to tissues at levels of 0.2, 0.1, and 0.05 ppm were 74.0, 68.6, and 66.3%, respectively. The detection limit was 2 ng for olaquindox standard and 0.02 ppm in tissues.  相似文献   

4.
An accurate, sensitive method is described for the determination of monensin residue in chicken tissues by liquid chromatography (LC), in which monensin is derivatized with a fluorescent labeling reagent, 9-anthryldiazomethane (ADAM), to enable fluorometric detection. Samples are extracted with methanol-water (8 + 2), the extract is partitioned between CHCl3 and water, and the CHCl3 layer is cleaned up by silica gel column chromatography. Free monensin, obtained by treatment with phosphate buffer solution (pH 3) at 0 degrees C, is derivatized with ADAM and passed through a disposable silica cartridge. Monensin-ADAM is identified and quantitated by normal phase LC using fluorometric detection. The detection limit is 1 ppb in chicken tissues. Recoveries were 77.6 +/- 1.8% at 1 ppm, 56.7 +/- 7.1% at 100 ppb, and 46.5 +/- 3.7% at 10 ppb fortification levels in chicken. Gas chromatography-mass spectrometry is capable of confirming monensin methyl ester tris trimethylsilyl ether in samples containing residues greater than 5 ppm.  相似文献   

5.
A liquid chromatographic (LC) method is described for determination of ampicillin residues in fish tissues. The drug is extracted from tissues with methanol, and the extract is evaporated to dryness. This residue is cleaned up by Florisil cartridge chromatography. LC analysis is carried out on a Nucleosil C18 column, and ampicillin is quantitated by ultraviolet detection at 222 nm. Recoveries of ampicillin added to tissues at levels of 0.2 and 0.1 ppm were 73.2 and 61.5%, respectively. The detection limit was 3 ng for ampicillin standard, and 0.03 ppm in tissues.  相似文献   

6.
A liquid chromatographic (LC) method is described for the quantitative determination of sulfamoyldapsone (2-sulfamoyl-4,4'-diaminodiphenyl sulfone) in swine muscle, liver, kidney, and fat. Sulfamoyldapsone was extracted from tissues with acetonitrile saturated with n-hexane. The extract was washed with n-hexane saturated with acetonitrile, concentrated, and cleaned up by alumina column chromatography. Sulfamoyldapsone was separated on an ODS column by using acetonitrile-methanol-water (6 + 18 + 76) and was detected at 292 nm. Overall average recovery of sulfamoyldapsone added to tissues at levels of 0.1 and 0.5 microgram/g was 93.3% +/- 6.0. Detection limit was 0.02 microgram/g in these tissues.  相似文献   

7.
A method is presented for determination of amprolium residues in chicken muscles by a liquid chromatographic post-column reaction system. The drug is extracted from muscles with methanol, and the extract is concentrated to 3-4 mL. This aqueous solution is rinsed with n-hexane and cleaned up by alumina column chromatography. The drug is separated from the interferences on a LiChrosorb RP-8 column, reacted with ferricyanide in alkaline solution, and quantitated by fluorometric detection at 367 nm (excitation) and 470 nm (emission). Recoveries of amprolium added to chicken muscles at levels of 0.1 and 0.2 ppm were 74.9 and 80.9%, respectively. The detection limit was 1 ng for amprolium standard and 0.01 ppm in chicken muscles.  相似文献   

8.
A liquid chromatographic method is described for the quantitative measurement of nicarbazin in chicken liver, fat, muscle, and skin tissues. The 4,4'-dinitrocarbanilide (DNC) portion of nicarbazin is extracted from tissues with ethyl acetate. After filtration and evaporation, the extract is purified by liquid-liquid partitioning with acetonitrile-hexane and alumina cartridge chromatography. DNC is separated and measured by reverse-phase liquid chromatography (RP-LC) with an octadecylsilyl (ODS) column and a UV detector set at 340 nm. The overall average recovery of DNC added to tissues was 83.4 +/- 3.1%. The lowest level validated in tissues by this procedure was 0.10 ppm. The limit of detection was estimated to be 0.020 ppm. This method provides a sensitive, selective, rapid, and reproducible alternative to existing purification, separation, and detection techniques, such as differential pulse polarography and colorimetry, for determination of nicarbazin in chicken tissues. Identity of DNC is confirmed by subjecting the purified extracts to thermospray-LC/mass spectrometric analysis using negative-ion detection and selected ion monitoring. Three structural-indicating ions at m/z 302, 272, and 164 are monitored in the thermospray-mass spectrum which are characteristic of the DNC molecule.  相似文献   

9.
A liquid chromatographic (LC) method is described for the determination of neomycin in animal tissues. Tissues are homogenized in 0.2M potassium phosphate buffer (pH 8.0); the homogenate is centrifuged, and the supernate is heated to precipitate the protein. The heat-deproteinated extract is acidified to pH 3.5-4 and directly analyzed by LC. The LC method consists of an ion-pairing mobile phase, a reverse phase ODS column, post-column derivatization with o-phthalaldehyde reagent, and fluorometric detection. The LC method uses paromomycin as an internal standard, and separates neomycin from streptomycin or dihydrostreptomycin because they have different retention times. The LC column separates neomycin in 25 min; the detection limit is about 3.5 ng neomycin. The overall recovery of neomycin from kidney tissues spiked at 1-30 ppm was 96% with a 9.0% coefficient of variation. The method was also applied to muscle tissue.  相似文献   

10.
Residues of novobiocin in milk, blood, and tissues can be detected by microbiological tests but cannot be distinguished from other antibiotics. A simple liquid chromatographic (LC) method was developed for identification of residues. Tissues were blended and milk and blood serum were mixed with 0.2M NH4H2PO4. The mixture was deproteinized by adding aqueous methanol and filtering. The LC apparatus consisted of a variable wavelength detector, set at 340 nm, an automatic loop injector, and a C18 column with guard cartridge. The flow rate was 1 mL/min and the solvent mixture of 0.01M H3PO4-acetonitrile-methanol was programmed from 50 + 0 + 50 (0-1 min) to 20 + 80 + 0 (20 min). Novobiocin was concentrated directly by solid-phase extraction on the analytical column. Five or more 200 microL aliquots of the filtrate in water-methanol (1 + 1) (adjusted if necessary) were injected with the column solvent at 50 + 0 + 50. After the final injection, the program was run to completion. Recoveries were 90-100% with sensitivities of 0.05 ppm or less. The procedure should be adaptable for use with formulations and feeds.  相似文献   

11.
A spectrofluorometric (SPF) method is described for determination of residues of BAY Vp 2674 in chicken and turkey tissues. The drug is extracted from tissues with dichloromethane-methanol. The organic extract is concentrated to near dryness and cleaned up by a series of partitionings with n-hexane, then dichloromethane against pH 2 buffer and dichloromethane against pH 12 buffer. The drug is partitioned into dichloromethane from pH 7 buffer and concentrated to dryness. The residue is dissolved in pH 3.5 buffer for SPF analysis at 282 nm (excitation) and 445 nm (emission). Recoveries of BAY Vp 2674 added to chicken and turkey tissues at levels of 0.05, 0.1, and 0.2 ppm range from 86 to 92% with a coefficient of variation of 3.4-10.1%. Detection limit is 0.02 ppm. A liquid chromatographic confirmatory procedure is also described, with ultraviolet and fluorescence detection.  相似文献   

12.
A procedure is described for the quantitation of Zoalene (3,5-dinitro-o-toluamide) and its 2 major monoamino metabolites in chicken tissues. The method includes blender extraction of tissue with chloroformethyl acetate (1 + 1), adsorption of the drug and metabolites on neutral alumina, and subsequent elution of the residues with pH 3.5 formate buffer-methanol (6.5 + 3.5). Recovered residues were separated on a 5 micron C18 column with the alumina eluting solvent as the LC mobile phase. The parent drug and metabolites were detected and quantitated with an electrochemical detector in the reductive mode with a minimum level of reliable measurement of 0.1 ppm. Overall mean recoveries greater than 85% were obtained with Zoalene and its 2 monoamino metabolites in breast, thigh, and liver tissues fortified with 0.25-2.00 ppm. The results on tissues from chickens fed a diet containing 0.0125% Zoalene are presented.  相似文献   

13.
Liquid chromatographic methodology for the characterization of orange juice   总被引:1,自引:0,他引:1  
Liquid chromatographic (LC) methodology potentially useful for the characterization of orange juice, with particular regard to detecting adulteration of orange juice by computer pattern recognition analysis, has been developed. After dilution with methanol the juice is extracted with hexane to remove the carotenoids, which are chromatographed on a C18 column with an acetonitrile-methanol-methylene chloride mobile phase and detection at 450 nm. Further extraction of the juice with methylene chloride isolates the methoxylated flavones, which are chromatographed by reverse phase LC with an acetonitrile-methanol-water mobile phase and detection at 280 nm. The flavanone glycosides remaining in solution are chromatographed on a C18 column with an acetonitrile-water mobile phase and detection at 280 nm. The precisions of the heights of the 32 LC peaks selected for pattern recognition analysis were determined from 5 replicate analyses of a single juice. Coefficients of variation of the replicates ranged from 0.3 to 4.5%, with an average of 2.1%. Adulteration of products with sodium benzoate-fortified pulpwash or grapefruit juice can be detected by this method. Pattern recognition analysis of the data obtained for 80 authentic and 19 adulterated orange juices showed that the method is potentially useful for distinguishing between authentic and adulterated products.  相似文献   

14.
Liquid chromatographic determination of carbadox residues in animal feed   总被引:3,自引:0,他引:3  
A liquid chromatographic (LC) method for determining residues of carbadox in the 0.01-10 ppm range in swine feed is described. Carbadox is extracted from ground feed with 25% acidified methanol-CHCl3, removed from emulsion-forming coextractables via an alumina column, separated from highly colored pigments by acid-base liquid-liquid partitioning, and finally isolated from interferences on a second alumina column. Isocratic reverse phase LC at 305 nm is used for quantitation. The average overall recovery at the 0.1, 0.5, and 1.0 ppm spike levels was 83.0% with a standard deviation of 2.04% and a coefficient of variation of 2.46%.  相似文献   

15.
A liquid chromatographic (LC) method with fluorometric detection was developed to quantitatively determine residue levels of monensin, salinomycin, narasin, and lasalocid in beef liver tissue. The ionophores are extracted from the tissue, purified by both alumina and Sephadex LH-20 column chromatography, and then derivatized. Lasalocid was directly esterified with 9-anthryldiazomethane (ADAM), but monensin, salinomycin, and narasin were first acetylated with acetic anhydride and then esterified with ADAM. The ADAM derivatives were purified on a silica gel column and separated by LC using an RP C-8 5 micron column. A fluorescence detector set at 365 nm (excitation) and 418 nm (emission) was used to monitor the column effluent. The detection limits were 0.15 ppm, and the calibration curves were linear between 0.5 and 5.0 ppm for all 4 ionophores. Mean recoveries were 57, 70, 75, and 90% for lasalocid (5 ppm), monensin (2.5 ppm), salinomycin (2.5 ppm), and narasin (2.5 ppm), respectively. The ionophores were also separated and semiquantitated by using bioautography and thin layer chromatography with a vanillin spray.  相似文献   

16.
A liquid chromatographic (LC) method is described for the determination of vitamin D3 in sheep plasma. Samples are extracted by one of 2 different methods, depending on the concentration of vitamin D3. The samples are purified by using either a Sep-Pak silica cartridge or a small alumina column, followed by additional cleanup on a Metalsorb LC column. Final analysis was carried out on a 5 micron C18 column using a radial compression separation system with an acetonitrile-methanol solvent system. Vitamin D3 was completely resolved from any interfering compounds in the plasma; total run time was less than 15 min, using a variable wavelength detector set at 264 nm. The method was successfully applied to samples at levels of 1-10 ng added vitamin D3 mL sheep plasma, with recoveries in the range 90-97%.  相似文献   

17.
Abstract

A simple, rapid, and sensitive liquid Chromatographic (LC) method for the determination of water in soils was developed. In this method, water is extracted from soil with anhydrous methanol and injected into an LC system including a cation‐exchange column in the H form. The eluent is 1.0 mM transcinnamaldehyde in acetonitrile‐methanol (40:60). The detection scheme is based on the effect of water on the equilibrium established when trans‐cinnamaldehyde and methanol react in the H+ column to form cinnamaldehyde dimethylacetal and water. The equilibrium of the reaction is shifted towards the trans‐cinnamaldehyde (absorbs strongly at the detection wavelength, 300 nm) when water is introduced into the column. The extent of the shift and the resulting change in absorbance at 300 nm are proportional to the amount of water present.

Application of the method to a wide range of soils and of clay minerals containing from 0.7 to 25% water showed that the results of the LC method agreed closely with those of the gravimetric method. The LC method is accurate, precise, relatively free from interference, requires a small sample size, and gives a linear calibration graph over approximately three orders of magnitude of water concentrations. A single operator can perform approximately 80 analyses in a normal working day.  相似文献   

18.
A method is described for the determination of bisacodyl in enteric-coated tablets and suppositories by liquid chromatography (LC). The method will also determine the hydrolysis degradation products monoacetylbisacodyl and desacetylbisacodyl. The sample is dissolved in 2-propanol, and the extract is diluted with the mobile phase and injected into a liquid chromatograph fitted with a mu Bondapak C18 column and an ultraviolet detector set at 254 nm. The column is eluted with methanol-acetonitrile-0.01M citric acid (25 + 25 + 50). The pooled mean recovery value for bisacodyl from commercial enteric-coated tablets and suppositories was 99.7% with a pooled coefficient of variation (CV) of 0.72%. For content uniformity assays, the CVs were 0.7 and 1.0% for groups of 10 individual commercial suppositories and tablets, respectively. Differences between assay values by the LC and USP XX methods were 0.2% of declared for enteric-coated tablets (n = 5) and 1.0% of declared for suppositories (n = 2). The LC method can determine as little as 0.015 microgram of the monoacetyl or desacetyl degradation product.  相似文献   

19.
A liquid chromatography (LC) method for determining the hypoxanthine content in fish tissues has been developed. Hypoxanthine is extracted with 0.6M perchloric acid, and determined by LC on a reverse phase microparticulate column with UV absorbance detection. The mobile phase is 0.01M potassium phosphate buffer (pH 4.5). The percent relative standard deviation for measurements by the recommended method was less than 7% with a detection limit of 10 ng. Recoveries of hypoxanthine added to various fish tissues were better than 90%. The operational errors, interferences, and recoveries for spiked samples have been investigated and compare favorably with an established xanthine oxidase enzyme method. The described LC method is simple, rapid, and specific for measuring hypoxanthine content in various fish tissues. Some post-mortem studies have indicated the method may also be used for the determination of adenosine monophosphate, inosine monophosphate, and inosine.  相似文献   

20.
A liquid chromatographic (LC) method is described for the determination of chlortetracycline hydrochloride (CTC) in poultry/swine and ruminant feeds in the 10-100 ppm range and in premix. CTC is extracted from ground feed/premix with acidified acetone, and the extract is filtered through a Millex-HV filter or disposable C18 column. The filtrate is partitioned with methylene chloride when additional cleanup is necessary. A Nova-Pak C18 column is used for LC separation with determination at 370 nm. The average recovery of CTC from premix was 95% with a standard deviation (SD) of 1.70 and a coefficient of variation (CV) of 1.79%. The overall average recovery from feeds was 77% with an SD of 3.18 and a CV of 4.10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号