首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Six wood species were carbonized under various carbonization temperatures and nonoxygen conditions to obtained charcoal. The effects of wood species, rate of temperature rise, and carbonization temperature on the electromagnetic shielding efficiency (ESE) of the electric field were investigated. The wood species used in this study were Japanese cedar, China fir, western hemlock, red oak, fortune paulownia, and Taiwan acacia. Tested materials were carbonized in a high-temperature oven under the following conditions: rate of temperature rise 1°–5°C/min; carbonization temperature 500°–1100°C, with temperature intervals of 100°C; maximum temperature maintained for 1h; and flow rate of nitrogen 300ml/min. The electromagnetic insulation strength system was used to detect the ESE of the electric field of charcoal. It was found that western hemlock and fortune paulownia charcoal showed maximum ESE values of of 36 and 61dB generated at a carbonization temperature of 1000°C. The charcoals derived from four other wood species showed maximum ESE values of 28dB for Japanese cedar, 23dB for China fir, 32dB for red oak, and 38dB for Taiwan acacia, respectively, at a carbonization temperature of 1100°C. The ESE value for fortune paulownia charcoal was similar to those of metal nets. The relations between ESE and logarithmic values of resistivity (log) could be represented by a negatively exponential formula.Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

2.
Wood charcoal carbonized at various temperatures was analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to investigate the changes of chemical structures during the carbonization process. From the infrared spectra, the carbon double bonds and aromatic rings were seen to form at a carbonization temperature of about 600°C. From the XPS spectra, the ratio of aromatic carbons increased in the temperature range 800–1000°C and over 1800°C. The condensation of aromatic rings proceeded as carbonization progressed. The drastic reduction of electrical resistivity of charcoals was observed in almost the same temperature range. It was found that the condensation of aromatic rings had some relation to the decline in electrical resistivity. Wood charcoal carbonized at 1800°C was partly graphitized, a finding supported by the results of X-ray diffraction and XPS. The functional groups containing oxygen diminished with the increase in carbonization temperature.This paper was presented at the 45th Annual Meeting of the Japan Wood Research Society in Tokyo, April 1995 and at the 47th Annual Meeting of the Japan Wood Research Society in Kochi, April 1997  相似文献   

3.
Biomorphous Eu3+-doped Y2O3 was fabricated by replication of wood templates using vacuum-assisted infiltration of a water-based sol–gel mixture and subsequent calcination at 750°C. The precursor sols were prepared from (Y0.95Eu0.05)2O3 dissolved in 10 vol% nitric acid and adding citric acid as the chelating agent. X-ray powder diffraction analyses and Rietveld refinements confirmed that the calcined samples were solely composed of bixbyite Y2O3:Eu3+ phase with a mean crystallite size of 16 nm. Scanning electron micrographs and cathodoluminescence imaging showed that the cellular preform anatomy was retained and that the original wood cell walls were completely transformed into phosphor struts with pore sizes ranging from 5 to 20 μm. The optical properties of the biomorphous phosphor materials were analyzed by photoluminescence spectroscopy and assigned to the characteristic Eu3+ (4f6 → 4f6) electric dipole or magnetic dipole transitions. From fluorescence lifetime measurements, the mean lifetime was calculated as 1.62 ms.  相似文献   

4.
The unidirectional leaching of unfixed hexavalent chromium (Cr6+) from wood freshly treated with chromated copper arsenate (CCA) is modeled as simultaneous diffusion and first-order chemical fixation reaction. Small wood specimens were coated to restrict preservative movement to one direction, then treated with CCA and immersed in water to evaluate unidirectional leaching characteristics. The directional diffusion coefficients and reaction rate constants of Cr6+ in unfixed CCA-treated red pine (Pinus resinosa Ait.) and southern pine (Pinus sp.) were estimated by least squares fitting of the model to leaching results in each direction independently. The reaction rate constants calculated from the diffusion and leaching model were generally consistent with results from pure fixation experiments, although the computed rate constants increased under the most severe longitudinal leaching conditions. The applicability of using diffusion coefficients and rate constants estimated from leaching results was tested using a finite difference implementation of the diffusion and reaction model to predict unidirectional leaching from small samples immersed intermittently in water. The predicted leachate quantities were consistent with experimental measurements at the end of each of five leaching events of various durations at temperatures alternating between 13 and 23°C over a 9-day period.  相似文献   

5.
To utilize forest resources in areas affected by fallout from the Fukushima Daiichi Nuclear Power Plant accident, it is important to understand the mechanisms of 137Cs movement through the stem wood of contaminated trees. Understanding the mechanism of absorption and migration of 137Cs to stem wood is necessary for clues to the future prediction of the transition of 137Cs to xylem. In the present study, radial variations in 137Cs concentration were investigated in Japanese cedar (Cryptomeria japonica D. Don) trees collected 1 year and 10 months after the accident. Additionally, the relationship between 137Cs concentration and potassium (K) content was established. Trees with a higher moisture content and lower lightness value in heartwood tended to have a higher 137Cs concentration in the heartwood. In these trees, 137Cs concentration peaked at the heartwood–sapwood boundary and gradually decreased toward the pith. By contrast, K content within the heartwood remained nearly constant along the radial direction. The heartwood-to-sapwood ratio of 137Cs concentration was significantly positively correlated with that of K content. Based on these results, we suggest that 137Cs movement from sapwood to heartwood might be related to the K content ratio of heartwood and sapwood.  相似文献   

6.
In the last century, many calcareous soils in Castilla León (northwestern Spain) have been transformed from natural Quercus ilex forest to cropped land. Reforestation with Pinus halepensis has been taking place during the past 40 years. In order to obtain a better understanding of how these disturbances affect ecosystem functioning, we studied the quantity and quality of soil organic matter (SOM) in natural forest ecosystems, cropland and Pinus plantations. Density fractionation combined with ultrasonic dispersion enables separation and study of SOM fractions: free organic matter (OM), OM occluded into aggregates and OM stabilized in organo-mineral complexes, considered on the basis of the type of physical protection provided. We separated SOM density fractions and determined the concentrations of C and N, C/N ratios and the natural isotopic abundance (δ13C and δ15N values). Transformation of Quercus forest to cropland resulted in major losses of SOC and N, as expected. However, subsequent reforestation with Pinus resulted in good recovery of the original SOC and soil N pools. This indicates the potential for enhanced C storage in agricultural soils by their reversion to a forested state. Study of the density fractions and their 13C and 15N signatures enabled better understanding of the high stability of OM in calcareous soils, and analysis of δ13C variations throughout the profile also enabled identification of past C3/C4 vegetation change. Despite the different OC contents of soils under different land use, OM stabilization mechanisms were not significantly different. In calcareous soils, accumulation of SOC and N is mainly due to organo-mineral associations, resulting in physicochemical stabilization against further decomposition.  相似文献   

7.
The Raman spectrum of Artocarpus heterophyllus heartwood, which proved to be a rich source of flavonoids, exhibited two characteristic bands, at 1247cm–1 and 745cm–1. The bands also appeared in the Raman spectrum of the yellow-brown needles extracted from the heartwood with methanol. Based on the Raman measurements of flavones and related compounds, it was predicted that the Raman band at 1247cm–1 may be attributed to flavonoid-type compounds. No vibrational band corresponding to the characteristic Raman bands was observed by diffuse reflectance infrared spectroscopy. Thus, it was suggested that observation of the characteristic bands is an advantage of Fourier transform-Raman spectroscopy for nondestructive analysis of wood.  相似文献   

8.
Genetic divergence was studied in selected 36 genotypes of Dalbergia sissoo Roxb. on the basis of seven morphological parameters. The divergence among genotypes was estimated by Mahalanobis method and genotypes were grouped into clusters by Tocher’s method. All the genotypes were classified into seven distinct clusters on the basis of seven morphological traits. Cluster 1 was the largest with 25 genotypes followed by Cluster 2 (four genotypes). Cluster 3, 5, 6 and 7 were the divergent clusters. The D 2 analysis revealed that D 2 value (39.42) between clone 5040 and clone 201 was recorded maximum. The intra-cluster distance ranged from 0.00 (Cluster 3, 5, 6 and 7) to 3.89 (Cluster 1), the Cluster 3 (clone 33) was the most divergent cluster with maximum inter cluster distance (13.97) with the Cluster 7. By the divergence analysis, the parents for hybridization from diverse clusters could be selected for heterotic hybrids.  相似文献   

9.
Crystallinity is an important property of woody materials; it responds to tree growth traits, structure, and chemical composition, and has a significant effect on Young’s modulus, dimensional stability, density, and hardness, etc. The ability of near-infrared (NIR) spectroscopy coupled with multivariate analysis to rapidly predict the crystallinity of slash pine (Pinus elliotii) plantation wood was investigated. The results showed that the NIR data could be correlated with the X-ray diffraction (XRD)-determined crystallinity of slash pine wood by use of partial least squares (PLS) regression, producing excellent coefficients of determination, r 2, and root mean square error of calibration, RMSEC. The use of either reduced spectral ranges or the selection of certain wavelengths consistent with known chemical absorptions did not have any detrimental effect on the quality of PLS models allowing the use of inexpensive, small, and portable spectrometers. These studies show that NIR spectroscopy can be used to rapidly predict the crystallinity of slash pine wood.  相似文献   

10.
Theobroma cacao seedlings were grown alone (TCA) or associated with saplings of N2-fixing shade trees Gliricidia sepium and Inga edulis in 200 l of 15N labelled soil within a physical root barrier for studying direct nitrogen transfer between the trees and cacao. Root:shoot partitioning ratio for sapling total N was lower than biomass root:shoot ratio in all species. Sapling total 15N was partitioned between root and shoot in about the same ratio as total N in cacao and inga but in gliricidia much higher proportion of 15N than total N was found in roots. Thus, whole plant harvesting should be used in 15N studies whenever possible. Average percentage of fixed N out of total tree N was 74 and 81% for inga estimated by a yield-independent and yield-dependent method, respectively, and 85% for gliricidia independently of estimation method. Strong isotopic evidence on direct N transfer from trees to cacao was observed in two cases out of ten with both tree species. Direct N transfer was not correlated with mycorrhizal colonisation of either donor or receiver plant roots. Direct N transfer from inga and gliricidia to cacao is conceivable but its prevalence and the transfer pathway via mycorrhizal connections or via reabsorption of N-rich legume root exudates by cacao require further study. Competition in the restricted soil space may also have limited the apparent transfer in this study because the trees accumulated more soil-derived N than cacao in spite of active N2 fixation.  相似文献   

11.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

12.
In this study, amino-functionalized magnetic γ-Fe2O3/sawdust composites (MSC-NH2) were investigated as biological absorption materials for removing Cu2+ ions from aqueous solution. These composites were fabricated by precipitated γ-Fe2O3 nanoparticles on sawdust substrate and then functionalized with 1,6-hexanediamine. Characterization of MSC-NH2 was performed by means of SEM, TEM, XRD, FTIR, BET, MPMS and XPS analysis to discuss the uptake mechanism. As a result, the amino groups are grafted upon the sawdust surfaces. The MSC-NH2 could be effectively used to remove Cu2+ from aqueous solution and be separated conveniently from the solution with the help of an external magnet. Batch experiments show that the adsorption equilibrium is achieved in 150 min, and the adsorption capacity is 7.55 mg/g at pH 6 and room temperature. The isotherm analysis indicates that the sorption data could be represented by Langmuir isotherm models. The kinetics is evaluated utilizing the Lagergren pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion models. Thermodynamic parameters reveal the spontaneous, endothermic and chemical nature of adsorption.  相似文献   

13.
Norway spruce dust was impregnated with aqueous solutions of chromated copper wood preservatives. Immediately after treatment, observation of CO2 evolution and O2 consumption were performed. Significant quantities of CO2 were released during reaction of chromium (K2Cr2O7) containing solutions with wood or brown rotted wood. Nevertheless, during reaction of cellulose with these preservatives we did not observe evolution of CO2. The presence of copper did not influence on concentration of CO2. Opposite to CO2 evolution, treatment of wood and brown rotted wood resulted in O2 consumption. The oxygen concentration decrease in the measuring chamber was approximately 5 times greater than increase of concentration of carbon dioxide. Electron paramagnetic resonance (EPR) observations of chromium fixation showed that chromium is reduced from Cr(VI) to Cr(III) with Cr(V) as an intermediate on wood, brown rotted wood and cellulose. However, the reduction on wood and brown rotted wood was faster than the reduction on cellulose, as determined from changes of Cr signals in EPR spectra. So, evolution of CO2 and consumption of O2 as well as EPR signals of Cr species thus indicate that brown rotted wood, consisting of lignin and hemicelluloses in contact with Cr(VI) reacts more intensively than cellulose, and possibly, oxidation mechanisms of lignin and cellulose with Cr(VI) are different. Received: 20 July 2000  相似文献   

14.
Potassium antimonite was used to localize Ca^2 in the apical bud cells of spruce from July 1999 to May 2000.During the period of active growth (July 14), Calcium precipitates, an indication of Ca^2 localization, were mainly distributed in vacuoles, intercellular spaces and cell walls. Few Ca^2 deposits localized in the cytosol and nucleus, showing a low level of the cytosolic and nuclear Ca^2 concentration in the warm summer. In August, some Ca^2 deposits appeared in the cytosol and nuclei,indicating that Ca^2 influx occurred in the cytosol and nucleus as the day length became shorter. From September to November, high levels of the cytosolic and nuclear Ca^2 remained. During the mid-winter (December and January), the distribution of Ca^2 deposits and the ultrastructures in the cells were altered dramatically. Plasmolysis occurred in many cells due to the protoplasmic dehydration.In addition plasmalemma invagination and nuclear chromatin aggregation also occurred. A large number of Ca^2 deposits appeared in the space between the plasmalemma and the cell wall. And also some Ca^2 deposits were distributed in the plastids. However, few Ca^2 deposits were observed in the cytosol and nuclei. By spring of the next year (May), when plants were de-acclimated and resumed active growth, Ca^2 subcellular localization essentially restored to that observed in July of the last year, i.e., the cells contained low cytosolic and nuclear Ca^2 concentrations; Ca^2 deposits were mainly distributed in the vacuoles, cell walls and intercellular spaces. The relationships between the seasonal changes of intracellular Ca^2 concentration and the development of dormancy/cold acclimation, as well as plasmolysis associated with dormancy and cold hardiness were discussed.  相似文献   

15.
The cultivation of ornamentals to produce woody floral products—the fresh or dried stems that are used for decorative purposes—may be an attractive option for southeastern landowners looking to generate income from small landholdings. Since many shrubs native to the understory of the longleaf pine (Pinus palustris Mill.) ecosystem have market potential, one possibility is the intercropping of select species in the between-row spacing of young longleaf pine plantations. The objective of this study was to evaluate how interspecific competition affects the fate of 15N fertilizer when American beautyberry (Callicarpa americana L.), wax myrtle (Morella cerifera (L.) Small) and inkberry (Ilex glabra (L.) A.Gray) are intercropped with longleaf pine. Nitrogen derived from fertilizer (NDF), utilization of fertilizer N (UFN) and recovery of fertilizer N (RFNsoil) were compared between agroforestry and monoculture (treeless) treatments to assess the effects of competition. Results varied by species, with NDF being higher for C. americana foliage and lower for all M. cerifera tissues in the agroforestry treatment. No effect was observed for I. glabra. UFN was lower for all species in the agroforestry treatment. RFNsoil was higher in the agroforestry treatment for I. glabra, but no treatment effects were observed for C. americana or M. cerifera. Overall, while it is clear that interspecific competition was present in the agroforestry treatment, the inefficiency of fertilizer use suggests that nitrogen was not the most limiting resource. Management interventions, particularly those that address competition for water, will likely be critical to the success of this system.  相似文献   

16.
Nitrogen inputs from biological nitrogen fixation contribute to productivity and sustainability of agroforestry systems but they need to be able to offset export of N when trees are harvested. This study assessed magnitudes of biological nitrogen fixation (natural 15N abundance) and N balance of Acacia mangium woodlots grown in farmer’s fields, and determined if N2 fixation capacity was affected by tree age. Tree biomass, standing litter, understory vegetation and soil samplings were conducted in 15 farmer’s fields growing A. mangium as a form of sequential agroforestry in Claveria, Misamis Oriental, Philippines. The trees corresponded to ages of 4, 6, 8, 10 and 12 years, and were replicated three times. Samples from different plant parts and soils (0–100 cm) were collected and analyzed for δ15N and nutrients. The B-value, needed as a reference of isotopic discrimination when fully reliant on atmospheric N, was generated by growing A. mangium in an N2-free sand culture in the glasshouse. Isotopic discrimination occurring during N2 fixation and metabolic processes indicated variation of δ15N values in the order of nodules > old leaves > young leaves > stems > litterfall and roots of the trees grown in the field, with values ranging from −0.8 to 3.5‰ except nodules which were enriched and significantly different from other plant parts (P < 0.0001). Isotopic discrimination was not affected by tree age (P > 0.05). Plants grown in N free sand culture exhibited the same pattern of isotopic discrimination as plants grown in the field. The estimated B-value for the whole plant of A. mangium was −0.86‰. Mature tree stands of 12 years accumulated up to 1994 kg N ha−1 in aboveground biomass. Average proportion of N derived from N2 fixation of A. mangium was 54% (±22) and was not affected by age (P > 0.05). Average yearly quantities of N2 fixed were 128 kg N ha−1 in above-ground biomass amounting to 1208 kg N fixed ha−1 over 12 years. Harvest of 12-year old trees removed approximately 91% of standing aboveground biomass from the site as timber and fuel wood. The resulting net N balance was +151 kg N ha−1 derived from remaining leaves, twigs, standing litter, and +562 kg N ha−1 when tree roots were included in the calculation. The fast growing A. mangium appears to be a viable fallow option for managing N in these systems. However, other nutrients have to be replaced by using part of the timber and fuel wood sales to compensate for large amounts of nutrient removed in order for the system to be sustainable.  相似文献   

17.
Bamboo was carbonized at different temperatures ranging from 200℃ to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Fourier Transform Infrared (FTIR) spectra of the residual solid products.The results showed:(1)Below 200℃,hemicellulose in bamboo wasdecomposed and a large amount of hydroxyl groups are dislocated from hemicellulose and cellulose,accompanied by the evolution of water to escape.(2)200℃-250℃,cellulose in bamboo was brastically decomposed whereas the net structure of lignin keep stable,with the except of the dislocation of methoxyl groups from lignin.(3)250℃-400℃,the net structure of lignin collapse,up to 400℃,followed by that the more position in aryl groups are substituted.(4)For bamboo carbonization,the aromatization of residual carbon has approximately completed at the temperature as high as 600℃.But the fusion of aromatic rings possibly does not occur.  相似文献   

18.
A field experiment was performed in eastern Kenya to estimate N2 fixation by Sesbania sesban over an 18-month period using the 15N dilution method. The influence of three reference species, Senna spectabilis, Eucalyptus saligna and Grevillea robusta, on the estimates of N2 fixation was also assessed. Percentage Ndfa (nitrogen derived from the atmosphere) was calculated based on foliar atom excess (FAE), above-ground atom excess (AAE) or whole tree atom excess (WAE) data. The differences in atom% 15N excess values between species and plant parts are presented and discussed. We recommend the use of several reference species for estimating %Ndfa and that the different results obtained should be carefully considered in relation to the issues being addressed. In this study, Senna was the most suitable of the three reference species because its N uptake pattern and phenology were very similar to those of Sesbania. When well established, the amount of N fixed by Sesbania accounts for more than 80% of its total N content, according to FAE-based estimates. We estimated the Ndfa by Sesbania after 18 months to between 500 and 600 kg ha−1 , depending on whether FAE, AAE or WAE data were used and on the choice of reference species. The substantial accumulation of N in planted Sesbania highlighted its potential to increase the sustainability of crop production on N-limited soils. We consider the 15N dilution method to be appropriate for quantifying N2 fixation in improved fallows in studies, similar to this one, of young trees with high N2-fixing ability.  相似文献   

19.
This study examined the temperature distribution during rotation welding process using birch (Betula spp.) wood dowel and Chinese larch (Larix gmelinii) substrates. Wood dowels were divided into two categories including an untreated group and a group pretreated with cupric chloride. The mechanics test results indicated that the pullout resistance of the pretreated group with welded time 3 s showed the best performance. As a fitting analyses result, both the untreated group and pretreated group showed a significant nonlinear relationship among temperature, welded depth and welded time. In the untreated group case, a linear regression relationship was found between the highest temperature of the welding interface and the depth. However, two-stage fitting was used to fit the regression for the pretreated group. Compared with the untreated group, thermogravimetric (TG) analysis of the pretreated group welding interface presented two pyrolytic peaks, and it illustrated that the pretreatment promoted the depolymerization and pyrolysis of wood constituents.  相似文献   

20.
The drying kinetics of reaction woods in Picea abies (compression wood) and Fagus sylvatica (tension wood) in comparison with their corresponding normal woods was investigated under constant convective drying conditions. Moisture profiles along the thickness of small flat-sawn boards taken from reaction and opposite wood zones were evaluated using a polychromatic X-ray system, a non-destructive method. The results revealed substantial differences in the drying behavior between the reaction and opposite woods. Both reaction woods represented slower drying rate than their matching normal woods mainly during the period of free water loss. However, the reaction and opposite woods reached the final moisture content (MC) of about 12% at the same time due to higher initial MC in the opposite woods. In the case of reaction wood, it took a longer time for the moisture profile to become approximately uniform. Overall, a more striking difference was observed in the drying behavior of compression and opposite wood in P. abies. Some important anatomical differences like the cell and pit dimensions and their proportion give some explanations for these drying behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号