共查询到16条相似文献,搜索用时 93 毫秒
1.
绿茶微波真空干燥特性及动力学模型 总被引:3,自引:6,他引:3
为了解茶叶在微波真空干燥过程中水分的变化规律,以绿茶为原料,进行了微波真空干燥试验。通过绘制干燥曲线和失水速率曲线,研究相对压力、比功率对绿茶微波真空干燥特性的影响,并建立干燥动力学模型,量化比功率与干燥时间、含水率之间的关系。结果表明:绿茶微波真空干燥过程按失水速率快慢可分为加速和降速2个阶段,无明显恒速干燥阶段;随着相对压力降低,干燥时间缩短,但-80 kPa后继续降低相对压力对含水率变化影响不显著;比功率越大干燥时间越短;绿茶微波真空干燥的动力学模型满足Page方程,该模型可较好地描述含水率随干燥时 相似文献
2.
3.
为减少脱水蔬菜冷冻干燥过程的能耗,以胡萝卜片为试材,采用真空微波和冷冻干燥组合的工艺,即先微波真空后冻干(组合Ⅰ)和先冻干后微波真空干燥(组合Ⅱ)。组合Ⅰ的优化参数为:真空微波阶段微波功率密度1.6w/g,脱去40个百分点的湿基水,冻干阶段升华干燥4 h,解析干燥3 h;组合Ⅱ的优化参数为:冻干阶段升华干燥7 h;真空微波干燥功率密度选1.0w/g以下,采用温度控制模式。所干燥胡萝卜片的β-胡萝卜素保留率和复水率等与纯冻干产品接近,体积保留率比纯冻干稍小,但仍能保持平直的外形;两种组合干燥工艺比纯冻干分别节能47.0%和54.2%,且干燥时间可缩短一半。 相似文献
4.
为减少脱水蔬菜冷冻干燥过程的能耗,以胡萝卜片为试材,采用真空微波和冷冻干燥组合的工艺,即先微波真空后冻干(组合Ⅰ)和先冻干后微波真空干燥(组合Ⅱ)。组合Ⅰ的优化参数为:真空微波阶段微波功率密度1.6 w/g,脱去40个百分点的湿基水,冻干阶段升华干燥4 h,解析干燥3 h;组合Ⅱ的优化参数为:冻干阶段升华干燥7 h;真空微波干燥功率密度选1.0 w/g以下,采用温度控制模式。所干燥胡萝卜片的β-胡萝卜素保留率和复水率等与纯冻干产品接近,体积保留率比纯冻干稍小,但仍能保持平直的外形;2种组合干燥工艺比纯冻干分别节能47.0%和54.2%,且干燥时间可缩短一半。 相似文献
5.
棉秆不同组分热解特性及动力学 总被引:3,自引:0,他引:3
该文采用耐驰STA449C热重分析仪,氮气气氛下,终止温度为600℃,升温速率为5、10、20、30℃/min,对棉秆、棉皮、木质、棉芯的热解特性进行了研究。TG-DTG曲线反映了4种物质具有相似的热解规律,热解过程分为4个阶段:失水,预热,主热解、炭化。棉皮在棉秆结构成分中灰分含量最高,造成其热解残留物较多。木质、棉芯成分中挥发分较多,其最大失重速率较大。通过积分法Stava和微分法Achar两种方法求解了机理函数,研究表明在转化率α=10%~80%过程中,4种物质的活化能较稳定,棉皮活化能值较高。4种物质最可能机理属于随机成核和随后生长机理,但反应级数存在差异。该研究对棉秆再利用及生物质热解装置的正确设计以及工艺参数优化具有重要的指导意义。 相似文献
6.
基于品质和能耗的杏鲍菇微波真空干燥工艺参数优化 总被引:2,自引:11,他引:2
为了提高杏鲍菇干制产品品质,降低干燥能耗,该文应用微波真空技术干燥杏鲍菇。采用三元二次回归旋转组合设计方法进行工艺参数优化试验,考察分析微波强度(X1)、物料厚度(X2)、腔体绝对压力(X3)因素对品质指标色差(Y1)、复水比(Y2)、氨基酸含量(Y3)和单位能耗(Y4)的影响及因子间交互作用对指标的影响;采用线性加权法,将多目标综合优化,确定干燥工艺的最优参数组合。结果表明:微波强度、物料厚度、腔体绝对压力对试验指标色差、复水比、氨基酸含量、单位能耗影响显著,物料厚度是影响色差的主要因素,物料厚度小于2 cm时,产品色泽较差;腔体绝对压力是影响复水比和氨基酸含量的主要因素,较小的腔体绝对压力有利于产品复水和减少氨基酸损失;微波强度是影响单位能耗的主要因素,高的微波强度,能耗较高,高的微波强度与较小的腔体绝对压力组合时,干燥能耗更高;杏鲍菇微波真空干燥高品质低能耗的最优工艺参数组合为微波强度12.5 kW/kg、物料厚度2.4 cm、腔体绝对压力18 kPa,此条件下干燥的产品品质优良,色泽洁白,色差L为78,复水性好,复水比为1.58,氨基酸破坏少,其值为473.1 mg/100 g,单位能耗较低,为9.3 kJ/kg。 相似文献
7.
8.
糖姜间歇微波真空干燥特性及其动力学模型 总被引:2,自引:2,他引:2
为了探讨避免糖姜焦糊的微波真空干燥模式,该文以湿糖姜为原料,研究真空度、功率质量比及姜块的体积对糖姜间歇微波真空干燥速率及品质的影响,建立糖姜干燥动力学模型。结果表明:糖姜采用间歇式微波真空干燥技术,能避免焦糊和褐变的发生,适宜微波加热和间歇时间分别为30和90?s,功率质量比为10~?15?W/g,真空度为-80?kPa;糖姜微波真空干燥的动力学满足指数模型,该模型能很好预测微波真空干燥过程中糖姜含水率随干燥时间、比功率、真空度和姜块体积的变化关系,试验结果为实现糖姜的可控制工业化干燥提供技术依据。 相似文献
9.
为了探索出棉秆常压下采用微波辐射方法的蒸煮新工艺,该文在分别考察了总碱量、混合碱用量比、辐射时间、辐射功率对蒸煮制浆效果单因素影响的基础上,通过正交试验确定其较佳工艺条件是:总碱量为18%,NaOH:Na2SO3质量比为4:7,固液比为1:8,微波辐射时间为45min。结果表明,在较佳工艺条件下,棉秆浆得率可稳定在53.3%左右、硬度在20左右。所得纸浆与常规化学浆相近。结果为棉秆资源的应用开辟一条新途径,为中国纸浆产业新的原料来源与制浆方法提供参考。 相似文献
10.
11.
在任何一个国家的经济发展中,能源都扮演着一个重要的角色。在中国,尽管目前消耗在农业生产上的能源占全国能源消耗总量的比例很低,但随着中国农业现代化的发展,尤其是粮食干燥机械化的普及,农业生产对能源的需求将逐渐增加。该文对中国粮食干燥机械化的发展及现状进行了简单分析总结,对中国目前在粮食干燥中的能源消耗状况以及存在的问题进行了深入分析。完成的两组干燥实验结果表明,目前我国粮食干燥的单位能耗远远高于发达国家。因此,建议应在粮食干燥中大量采用干燥新技术、节能技术以及使用再生能源,以有效提高我国粮食干燥过程中的能源使用效率。 相似文献
12.
为降低南美白对虾干燥能耗,提高南美白对虾干燥品质,该文探讨了实验室太阳能干燥温度、风速及干燥量对干燥效果的影响和中试试验。通过实验室试验确定干燥温度范围为45~55℃,风速6~8 m/s,干燥量3~4 kg,响应面分析法分析了太阳能干燥温度、风速及干燥量与干燥能耗的关系,建立了二次回归模型,确定南美白对虾太阳能干燥最佳工艺参数为:干燥温度为53.40℃,风速为7.43 m/s,干燥量为3.65 kg。在实验室数据的基础上进行了中试试验,结果表明干燥鲜虾量100 kg(煮后69.5 kg)得到38.16 kg产品,所需总能耗549827.05 kJ,其中太阳能提供了379619.05 kJ,实际耗电47.28kW·h(折合能量170208 kJ)。太阳能干燥单位质量(1 kg)南美白对虾实际能耗0.68 kW·h/kg,相比热风纯电加热器干燥节能1.51kW·h/kg,相比燃煤烘房干燥可减少0.75kg/kg CO2排放。该研究结果为南美白对虾太阳能干燥工业化生产提供参考。 相似文献
13.
14.
为了找到一种经济便捷的苹果片干燥过程含水率实时检测方法,分析热风温度和风速对干燥过程的影响,该研究实时检测了不同风速和热风温度下苹果片的电阻抗和含水率并分析了其随时间变化的规律。结果表明,干燥过程中苹果片电阻抗随干燥时间的增加而增大,含水率随干燥时间而减小,两者线性负相关(R2≥9.3),因此可以通过电阻抗的变化实时检测苹果干燥过程。苹果片电阻抗和含水率随干燥时间的变化均符合薄层干燥Logarithmic模型;基于电阻抗和含水率分别拟合得出不同条件下的干燥速率,并利用阿伦尼乌斯公式求出苹果试样干燥过程活化能,当风速为0.5和1.0 m/s时,依据电阻抗计算所得活化能分别为32.447和23.212 k J/mol,含水率计算所得活化能为27.320和22.947 k J/mol,依据电阻抗计算所得活化能与前人研究活化能值更一致。研究结果可为苹果片干燥过程在线检测和分析提供参考。 相似文献
15.
为了降低空气源热泵干燥过程能耗,研究了空气源热泵干燥能耗特性,采用多元线性回归模型(multivariate linear regression model, MLRM)和BP神经网络(back propagation neural network, BPNN)模型来预测干燥工艺能耗。在分析干燥能耗影响特征参数的基础上,提出将干燥工艺过程进行切分处理的方法以降低数据获取难度。选取烘房设定温度、烘房设定湿度、烘房初始温度、烘房初始湿度、环境平均温度、环境平均湿度、物料质量和初始含水率8个特征参数作为模型输入,能耗和物料结束含水率作为模型输出。使用MLRM模型、BPNN模型和其他机器学习模型进行能耗预测,MLRM模型对能耗拟合的决定系数为0.739,对物料结束含水率拟合的决定系数为0.931;BPNN模型使用Sigmoid函数作为激活函数时对能耗拟合的决定系数最高,为0.828,使用Identity函数作为激活函数时对物料结束含水率拟合的决定系数最高,为0.942,拟合效果优于其他机器学习模型,能够满足实际生产需求。以复水豌豆为干燥对象设计加载物料65 kg、持续时间4 h的完整变温变湿干燥工艺进行验证试验,结果表明:试验总能耗为15.066 kW·h,MLRM模型和BPNN模型的预测总能耗分别为14.476 kW·h、15.183 kW·h,预测精度分别为96.08%、99.23%;试验结束含水率为8.541%,MLRM模型和BPNN模型的预测结束含水率分别为9.560%、8.889%,预测精度分别为88.07%、95.93%。该研究提出了一种使用MLRM模型和BPNN模型对空气源热泵干燥能耗进行分段精准预测的有效手段,对于优化干燥工艺和降低干燥能耗具有实际意义。 相似文献
16.
为了实现棉秆皮纤维在纺纱上的应用,该文在150℃以上的温度下用质量分数为4%的碱从棉秆皮中提取了纤维,测定了温度和时间对棉秆皮纤维细度、木质素质量分数及力学性能的影响。将棉秆皮纤维与棉按质量比30/70的比例进行混纺,研究了木质素的质量分数对混纺纱性能的影响。结果表明:随着温度的升高和时间的延长,棉秆皮纤维的细度和木质素质量分数逐渐下降。但是,当温度升高至170℃后,棉秆皮纤维的断裂强度迅速降低。160℃、60 min提取的纤维性能较理想:纤维细度28.3 dtex、木质素质量分数4.5%、断裂强度1.8 c N/dtex、杨氏模量46 c N/dtex。与闪爆及常压碱处理等方法相比,高温方法提取的纤维木质素质量分数低60%以上。棉秆皮纤维的木质素质量分数从5.5%降至4.5%后,混纺纱的条干变异系数和毛羽指数分别降低了75.1%和29.6%,而断裂强度和伸长率分别提高了11.1%和9.8%。高温提取的棉秆皮纤维可纺出细度为22.4 tex、断裂强度为12.0 c N/tex的纱线。 相似文献