首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
几种禾本科作物对铝的敏感性或耐性   总被引:14,自引:3,他引:14  
通过调查几种禾本科作物根的伸长,根尖的铝含量、铝诱导其根系有机酸的分泌,探讨作物耐铝(铝敏感)性及作物对铝毒害的抵御机理。结果表明,水稻、黑麦是耐铝的作物,而大麦、小麦(Scout 66)是对铝敏感的作物,玉米和高梁对铝敏感性较小麦弱。小麦和玉米品种间对铝的敏感性差异显著,而高梁对铝的敏感性品种间差异性较小。铝能够诱导水稻、黑麦和耐铝的玉米及小麦品种的根系分泌柠檬酸和/或苹果酸。这表明铝诱导有机酸的分泌是它们抵御铝毒害的机理。  相似文献   

2.
黑麦品种间耐铝差异性机制研究   总被引:1,自引:0,他引:1  
采用室内模拟方法,研究了铝诱导黑麦根系分泌有机酸、根尖磷对铝的固定作用。结果表明,在铝胁迫下冬牧品种(Win)相对根伸长率高于King品种。在铝胁迫下,经磷预处理的根尖铝和磷含量增加,且以Win品种根尖中的Al、P含量较高,说明根尖磷对铝的固定是黑麦耐铝机制之一。另一方面,在铝胁迫下,两品种根系均分泌柠檬酸和苹果酸,且Win的分泌速率较高。有机酸的分泌随着铝处理浓度(10、30、50 mol/L)和时间(0.5、3、6、9、12 h)的增加而增加,但在低温(4C)下柠檬酸分泌量显著减少。Al处理0.5 h后苹果酸已明显分泌,而柠檬酸的分泌在铝处理6 h后才明显增加。在铝处理前,进行缺磷预处理(3 d)不能增加有机酸的分泌,10 mol/L的La3+、Cu2+、Ni3+也不能诱导根系分泌有机酸。说明铝诱导根系专一性分泌有机酸也是黑麦品种间耐铝性差异的机制。  相似文献   

3.
以蓄和饭豆为试验材料,从对Al胁迫的响应时间、蛋白质合成抑制剂的影响、体内有机酸含量变化及阴离子通道抑制剂的影响等方面,比较研究了Al诱导根系分泌有机酸的差异,以进一步明确铝(Al)诱导植物根系有机酸分泌的过程。结果表明,萹蓄根系在Al胁迫后30.min内分泌出草酸,而Al胁迫至少4.h后饭豆根系才开始分泌柠檬酸;蛋白质合成抑制剂环己亚酰胺(Cycloheximide,CHM)不影响萹蓄根系草酸的分泌,但抑制了84%Al诱导的饭豆根系柠檬酸的分泌,表明前者不需要新蛋白质的诱导合成,却是后者所必需的。Al处理不改变萹蓄根尖草酸的含量,但明显提高了饭豆根尖柠檬酸的含量;阴离子通道抑制剂苯甲酰甲醛(Phenylglyoxal,PG)和蒽-9-羧酸(Anthrancene-9-carboxylic.acid,A-9-C)分别有效抑制Al诱导萹蓄根系草酸的分泌及饭豆根系柠檬酸的分泌,再次证明两者有机酸的分泌是通过某种被Al所诱导或激活的阴离子通道所实现的。  相似文献   

4.
研究了耐铝性明显差异的2个小麦基因型西矮麦1号(耐性)和辐84系(敏感)根系对铝毒胁迫的反应与根尖细胞壁组分以及细胞壁对铝的吸附和解吸的关系。结果表明,30mol/L.AlCl3可迅速抑制小麦根系伸长,但对辐84系根系伸长的抑制更为明显,且小麦根系相对伸长率随着铝浓度的提高而急剧降低。在30mol/L.AlCl3处理24h后,西矮麦1号根系伸长的抑制率为33.3%,而辐84系根系伸长的抑制率高达70.9%。小麦距根尖0~10.mm根段的铝含量和细胞壁中果胶糖醛酸含量显著高于10~20.mm根段,且前者对铝的累积吸附量明显大于后者;在0~10.mm根段,敏感基因型果胶含量高于耐性基因型,其根尖含铝量及根尖细胞壁对铝的吸附量都要大于后者。采用1.0.mol/L.NH3.H2O对细胞壁预处理2.h降低果胶甲基酯化程度后,耐性和敏感基因型根尖细胞壁对铝的累积吸附量分别降低了17.1%和20.9%,但对铝的累积解吸率没有影响。由此可见,小麦根尖是铝毒的主要位点,细胞壁果胶含量和果胶甲基酯化程度可能是导致不同小麦基因型根尖细胞壁对铝吸附量、铝积累量的差异及其对铝毒胁迫反应的差异的重要原因。  相似文献   

5.
铝诱导黑麦的根尖分泌有机酸   总被引:8,自引:0,他引:8  
虽然较多的研究已发现黑麦对铝毒害的忍耐能力较强,但是有关黑麦对铝毒害的抵御机理的报告很少。为了阐明黑麦(品种:King)对铝毒害的抵御机理,本研究探讨了黑麦的根系有机酸分泌的特性及其作用,铝能够诱导黑麦的根系分泌柠檬酸和苹果酸。柠檬酸主要从距顶端0-5mm的根尖分泌。有机酸的分泌量随着处理的铝浓度(0,50,100,300μmol/L AlCl3)和处理的时间(0.5,1,3,5h)的增加而增加。0,50,100,300μmol/L的AlCl3处理根尖3h后,从根尖分泌的柠檬酸和残留在根尖中的柠檬酸之和随着处理的铝浓度的增加而增加,而各处理间的苹果酸总量无显著差异。50μmol/L的柠檬酸或者400μmol/L的苹果酸能够消除50μmol/L 的AlCl3铝对小麦(Scout 66)根尖表面细胞的伤害。这些结果表明,铝促进柠檬酸的合成和柠檬酸、苹果酸从根尖的分泌是黑麦抵抗铝毒害的机理。  相似文献   

6.
铝毒胁迫下磷对荞麦根系铝形态和分布的影响   总被引:3,自引:1,他引:3  
以2个荞麦(Fagopyrum esculentum Moench)品种"江西荞麦"(铝耐性)和"内蒙荞麦"(铝敏感)为材料,采用水培法,研究铝毒胁迫下磷对荞麦根系总铝和单核2种形态以及Al在根尖和细胞壁中的分布情况的影响。结果表明,与200μmol/L Al处理相比,1.0mmol/L磷预处理分别使江西荞麦和内蒙荞麦的相对根长增加了24.4%和35.9%,根系总Al含量分别降低了18.2%和22.5%,根系单核Al含量分别降低了95%和63.2%。根尖细胞壁荧光检测结果为在单Al胁迫下细胞壁的荧光强度最大,1.0mmol/L磷预处理大幅度减弱细胞壁的荧光强度。表明外源磷供应可降低根系总Al和单核Al含量,使毒性形态的铝转化为无毒形态,以及减少Al在根尖以及细胞壁的积累,以缓解Al对根伸长的抑制,提高荞麦根系的抗铝毒害能力。  相似文献   

7.
为探讨铝(Al)胁迫条件下脱落酸(ABA)调控植物根系有机酸分泌的机制,进行了ABA与Al诱导大豆根系柠檬酸分泌的关系试验。结果表明:1)外源ABA和ABA合成抑制剂fluridone分别提高和降低了Al诱导的大豆根尖ABA含量的增加,但对根系柠檬酸分泌量均无影响,ABA对根系内源柠檬酸含量和柠檬酸合成酶的活性也没有影响;2)分根试验表明,与Al直接接触的根部(Part A)内源ABA含量发生变化,且有柠檬酸的分泌,而不与Al直接接触的根部(Part B)内源ABA含量也发生变化,但没有柠檬酸分泌;3)Al胁迫下,大豆耐Al基因型柠檬酸分泌量远高于敏感基因型,但二者的内源ABA含量却没有差异;4)30μmol AlCl3处理,在0~12 h柠檬酸分泌速率和内源ABA含量随Al处理时间增加而增加,去除Al胁迫时(12~18 h),柠檬酸分泌速率继续增加,但内源ABA含量则迅速下降。综合以上结果,推测ABA不是通过提高Al诱导柠檬酸分泌来调控大豆耐Al性。  相似文献   

8.
铝诱导大豆根系有机酸分泌是其解铝毒的一种重要机制,该过程需要消耗能量,然而有关能量消耗的定量研究还未见报道。本文比较了铝胁迫条件下,两个大豆品种根尖有机酸分泌、 腺苷酸、 无机磷、 细胞质pH值等指标的变化。结果表明,铝处理(25 mol/L)明显诱导大豆根系苹果酸和柠檬酸的分泌。与对照相比,铝胁迫条件下中豆32和本地2号的根尖ATP含量分别降低40.1%和13.2%,根系细胞质子跨膜电化学势差分别增加1711.8和570.6 J/mol,然而,根尖无机磷浓度变化差异不大。运用Nernst-Gibbs方程定量计算自由能变化,发现中豆32和本地2号根尖细胞自由能分别消耗16.13 kJ/mol和14.59 kJ/mol, 中豆32分泌单位苹果酸和柠檬酸的能量消耗分别为0.96 kJ/mol和3.15 kJ/mol,本地2号则为2.01 kJ/mol和5.68 kJ/mol。这表明不同耐铝性大豆品种分泌有机酸消耗的能量存在差异,该结果为筛选耐铝作物品种提供了新思路。  相似文献   

9.
用一氧化氮供体硝普钠(sodium nitroprusside,SNP)处理铝胁迫下的黑麦和小麦幼苗,探讨铝胁迫和铝胁迫下外源NO对黑麦和小麦根尖细胞壁铝吸附的影响。结果表明:铝显著抑制黑麦和小麦根的伸长生长,小麦受抑制更为严重;SNP处理可缓解铝对黑麦和小麦根伸长生长的抑制作用,1 mmol/L SNP处理最有效。小麦根尖对铝的吸附量和吸附速率显著高于黑麦的,1 mmol/L SNP处理显著降低小麦和黑麦细胞壁对铝的吸附量,使根尖铝含量显著下降。铝与根尖细胞壁的结合是导致植物铝毒害的重要原因,而降低根尖细胞壁对铝的吸附是外源NO缓解铝毒害的重要机制。  相似文献   

10.
铝胁迫下黑麦根尖分泌有机酸和钾离子的研究   总被引:1,自引:0,他引:1  
采用药理学研究方法,研究了几种抑制剂和脱落酸对铝诱导黑麦根尖分泌有机酸和钾离子的影响。结果表明,在铝(100、200、300μmol/L AlCl3)胁迫下,根尖分泌柠檬酸、苹果酸和钾离子,且随着铝处理浓度的增加其分泌量显著增加。阴离子通道抑制剂苯甲酰甲醛(0.1、0.2 mmol/L)抑制根尖在铝(200μmol/L AlCl3)胁迫下分泌有机酸的同时,也抑制根尖分泌钾离子;钾离子通道抑制剂四乙基铵(20、40 mmol/L)和铯(10、20 mmol/L CsCl)在抑制根尖分泌钾离子的同时,也抑制铝诱导的有机酸分泌。25、50μmol/L的ABA处理后,铝诱导的有机酸分泌和钾离子的分泌均显著增加。但是,铝诱导的有机酸分泌在受到阴离子通道抑制剂尼氟灭酸(0.4、0.8 mmol/L)处理抑制后,钾离子的分泌并不减少;铝胁迫下根尖分泌的钾离子在ATP酶抑制剂钒酸钠(0.25、0.50、2.00 mmol/L)处理后受阻的同时,有机酸的分泌却显著增加。这些结果说明,钾离子是铝诱导黑麦根尖分泌有机酸的陪伴离子,而并非有机酸分泌的调控因子。  相似文献   

11.
Phytotoxicity of aluminum (Al) has become a serious problem in inhibiting plant growth on acid soils. Under Al stress, the changes of rhizosphere pH, root elongation, absorption of Al by wheat roots, organic acids exuded from roots, and some main factors related to Al-tolerant mechanisms have been studied using hydroponics, fluorescence spectrophotometry, and high performance liquid chromatography (HPLC). Two wheat cultivars, Brevor and Atlas66, differing in Al tolerance are chosen in the study. Accordingly, the rhizosphere pH has a positive effect on Al tolerance. Atlas66 (Al-tolerant) has higher capability to maintain high rhizosphere pH than Brevor (Al-sensitive) does. High pH can reduce Al3+ activity and toxicity, and increase the efficiency of exuding organic acids from the roots. More inhibition of root elongation has been found in Brevor because of the exposure of roots to Al3+ solution at low pH. Brevor accumulate more Al in roots than Atlas66 even at higher pH. Al-induced exudation of malic and citric acids has been found in Atlas66 roots, while no Al-induced organic acids have been found in Brevor. These results indicate that the Al-induced secretion of organic acids from Atlas66 roots has a positive correlation with Al tolerance. Comprehensive treatment of Al3+ and H+ indicates that wheat is adversely influenced by excess Al3+, rather than low pH.  相似文献   

12.
《Journal of plant nutrition》2013,36(11):2047-2066
Abstract

Eighteen soybean genotypes differing in aluminum (Al) tolerance were used to investigate genotypic differences in Al-induced citrate exudation and its role in Al tolerance. Aluminum accumulation and localization in soybean roots were examined by analysis of total Al and hematoxylin staining. Soybean genotypes exhibited a wide range of Al tolerance. Based on relative root elongation, several Al-tolerant genotypes from Brazil such as B1, B10, and B15 were more tolerant than the Al-tolerant PI 416937 (PI) and Perry. All soybeans exuded citrate in response to Al stress, and some Al-sensitive genotypes secreted more citrate than tolerant ones, showing no correlation between the Al tolerance and Al-induced citrate exudation. Further study found that both copper (Cu) and cadmium (Cd) stimulated citrate and malate exudation in soybean, indicating that organic acid secretion is not specifically induced by Al. Aluminum concentrations were significantly higher in 2–3 and 3–4 cm of segments than that in 0–1 and 1–2 cm segments under 15 μM AlCl3. Both the root mature zone and apex were heavily stained by hematoxylin after exposure to 10, 15, or 20 μM AlCl3 (24 h), whereas root elongation zone was not stained. After exposure to 50 μM AlCl3 for 20 min, the Al-tolerant PI was less stained by hematoxylin than the Al-sensitive Young, suggesting that Al accumulation in root apices seem to be an immediate response to Al stress, and related to differential Al sensitivity. Present results suggest that citrate secretion induced by Al stress may not be a key mechanism responsible for the differential Al tolerance of some soybean genotypes and other mechanism(s) conferring Al exclusion should exist and operate immediately after exposure to Al stress.  相似文献   

13.
The wheat (Triticum aestivum L.) cultivar Yangzhou 158 was used as a reference. The wheat root exudates were collected using a hydroponic mode. The changes of the electrolytes, H+, sugar, organic acids, amino acids, and secondary metabolites in wheat root exudates induced by aluminum (Al) were studied. The research results show that Al stress affects wheat root exudation. The secreted electrolytes and sugar increase with the increasing of the external Al3+ concentration. The total amount of secreted amino acids has a specific correlation with the external Al3+ concentration. At first, the amino acids secrete normally, but when Al3+ concentration is over 10 mg.L-1, the amino acid constitution varies obviously. Under Al stress, some original secondary metabolites disappear gradually, and other new secondary metabolites release simultaneously. Increasing the external Al3+ concentration gradually stimulates the exudation of organic acids. The organic acid levels in the wheat root zone increase in response to Al treatments. Active Al ions are accumulated in wheat roots. This Al-dependent variation in wheat root exudates suggests a specific Al-induced response of the wheat.  相似文献   

14.
《Journal of plant nutrition》2013,36(8):1243-1253
Acidic soils limit the land available for crop production and increase the cost of production in many regions of the United States and the world. The use of Aluminum (Al)-resistant germplasm is one means of reducing the impact of acidic soils and development of such germplasm is limited by our understanding of the processes that confer resistance. This study sought to associate changes in root growth rate with Al entry into the tissue of two cultivars of wheat (Triticum aestivum L.) differing in sensitivity to Al. Changes in the spectral characteristics of morin were characterized to determine if a dual excitation or emission assay for Al could be developed. It was not possible to develop such a protocol. However, an assay based on changes in fluorescence intensity of morin was adopted from the work of Vitorello and Haug. Addition of Al to a total concentration of 5 μM resulted in a 50% decrease in root elongation rate with the Al-sensitive cultivar, Scout, but little change in root elongation with the Al-resistant cultivar, Atlas. Inhibition of root growth occurred without a noticeable lag. The addition of Al to the external solution of bathing Scout roots caused an increase in the fluorescence of intracellular morin, indicative of Al entry into the root cells. No increase in morin fluorescence was observed with Atlas roots exposed to 5 μM Al. Therefore, there was an association between morin fluorescence, thus presumably Al entry, and inhibition of root growth.  相似文献   

15.
Seventeen soybean cultivars were screened to discern differences in aluminum (Al) sensitivity. The Sowon (Al-tolerant) and Poongsan (Al-sensitive) cultivars were selected for further study by simple growth measurement. Aluminum-induced root growth inhibition was significantly higher in the Poongsan cultivar than in the Sowon cultivar, although the differences depended on the Al concentration (0, 25, 50, 75 or 100 μmol L–1) and the amount of exposure (0, 3, 6, 12 or 24 h). Damage occurred preferentially in the root apex. High-sensitivity growth measurements using India ink implicated the central elongation zone located 2–3 mm from the root apex. The Al content was lower 0–5 mm from the root apices in the Sowon cultivar than in the apices of the Poongsan cultivar when exposed to 50 μmol L–1 Al for 12 h. Furthermore, the citric acid exudation rate was more than twofold higher in the Sowon cultivar. Protein production of plasma membrane (PM) H+-ATPase from the root apices (0–5 mm) was upregulated in the presence of Al for 24 h in both cultivars. This activity, however, decreased in both cultivars treated with Al and the Poongsan cultivar was more severely affected. We propose that Al-induced growth inhibition is correlated with changes in PM H+-ATPase activity, which is linked to the exudation of citric acid in the root apex.  相似文献   

16.
Abstract

Seventeen soybean cultivars were screened to discern differences in aluminum (Al) sensitivity. The Sowon (Al-tolerant) and Poongsan (Al-sensitive) cultivars were selected for further study by simple growth measurement. Aluminum-induced root growth inhibition was significantly higher in the Poongsan cultivar than in the Sowon cultivar, although the differences depended on the Al concentration (0, 25, 50, 75 or 100?μmol?L–1) and the amount of exposure (0, 3, 6, 12 or 24?h). Damage occurred preferentially in the root apex. High-sensitivity growth measurements using India ink implicated the central elongation zone located 2–3?mm from the root apex. The Al content was lower 0–5?mm from the root apices in the Sowon cultivar than in the apices of the Poongsan cultivar when exposed to 50?μmol?L–1 Al for 12?h. Furthermore, the citric acid exudation rate was more than twofold higher in the Sowon cultivar. Protein production of plasma membrane (PM) H+-ATPase from the root apices (0–5?mm) was upregulated in the presence of Al for 24?h in both cultivars. This activity, however, decreased in both cultivars treated with Al and the Poongsan cultivar was more severely affected. We propose that Al-induced growth inhibition is correlated with changes in PM H+-ATPase activity, which is linked to the exudation of citric acid in the root apex.  相似文献   

17.
铝和镉胁迫对两个大麦品种矿质营养和根系分泌物的影响   总被引:7,自引:0,他引:7  
A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.  相似文献   

18.
Aluminum‐resistant Brachiaria decumbens Stapf cv. Basilisk (signalgrass) and closely related, but less resistant Brachiaria ruziziensis Germain & Evrard cv. Common (ruzigrass) both accumulated high concentrations of aluminum (Al) in roots. Approximately two thirds of the total Al was complexed by soluble low‐molecular‐weight ligands, suggesting that it had been taken up into the symplasm. We therefore investigated whether these species might employ Al‐chelating organic acids for internal detoxification of Al taken up by root apices, the primary site of Al injury. Unlike root apices of other Al‐resistant plant genotypes, which secrete organic‐acid anions to detoxify Al externally, apices of Brachiaria species accumulated organic acids within the tissue. A comparison with whole roots showed that this preference for accumulation (as opposed to secretion) was restricted to apices. Citric acid, and to a lesser extent trans‐aconitic acid, accumulated in a uniform dose‐dependent manner in root apices of both species as their Al content increased under Al‐toxic growth conditions. Their accumulation was accompanied by a stimulation of malate synthesis in Al‐resistant B. decumbens, while it occurred at the expense of malate in Al‐sensitive B. ruziziensis. These data suggest a role of organic acids in the internal detoxification of Al in root apices of both Brachiaria species, presumably contributing to their comparatively high basal level of Al resistance. Yet internal detoxification of Al by organic acids does not appear to be the principal mechanism responsible for the superior resistance of B. decumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号