首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. The correlation among gut microbiota, glycolipid metabolism, and metabolic diseases has been well reviewed in humans. However, the interplay between gut microbiota and host metabolism in swine remains incompletely understood. Given the limitation in conducting human experiments and the high similarity between swine and humans in terms of anatomy, physiology, polyphagy, habits, and metabolism and in terms of the composition of gut microbiota, there is a pressing need to summarize the knowledge gained regarding swine gut microbiota, its interplay with host metabolism, and the underlying mechanisms. This review aimed to outline the bidirectional regulation between gut microbiota and nutrient metabolism in swine and to emphasize the action mechanisms underlying the complex microbiome–host crosstalk via the gut microbiota–gut–brain axis. Moreover, it highlights the new advances in knowledge of the diurnal rhythmicity of gut microbiota. A better understanding of these aspects can not only shed light on healthy and efficient pork production but also promote our knowledge on the associations between gut microbiota and the microbiome–host crosstalk mechanism. More importantly, knowledge on microbiota, host health and metabolism facilitates the development of a precise intervention therapy targeting the gut microbiota.  相似文献   

2.
化学合成单拷贝(BS)、30拷贝串联(KG30)和30拷贝分支结构(MAP)3种不同结构的囊素样肽,通过体外外周血淋巴细胞刺激增殖试验、杂交瘤细胞抗体分泌刺激试验、E-玫瑰花环试验和体内小鼠腹腔巨噬细胞吞噬功能、新城疫疫苗免疫应答的测定,比较了其免疫增强活性。结果表明,BS和MAP的活性显著高于KG30,BS体外试验活性优于MAP,而MAP体内试验活性优于KS。结构对囊素的活性有显著影响,以分支结构的囊素增强免疫效果最好。  相似文献   

3.
In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.  相似文献   

4.
Cationic antimicrobial peptides are present throughout the plant and animal kingdoms and bear striking structural and functional similarities across species lines. They provide primitive, nonspecific means of combating a variety of bacteria, fungi, enveloped viruses, and protozoa. Some are also cytotoxic against host cells, including neoplastic cells. Cationic antimicrobial peptides may play various roles in inflammation and tissue repair. Antimicrobial peptides are found in epithelial tissues regularly exposed to microbial attack as well as in cells whose primary function is defense against potential pathogens. They constitute an important part of the nonoxidative antimicrobial arsenal of leukocytes. They are preformed and/or readily synthesized when the cells are stimulated by exposure to pathogens. They exert their effects directly by inserting into membranes of target cells and forming ion channels which increase membrane permeability; however, antimicrobial peptides can also act as opsonins to facilitate phagocytosis. Resistance to defensins is a virulence factor for organisms such as Salmonella sp. The study of cationic antimicrobial peptides is increasing our understanding of innate immunity, inflammation, and the pathogenesis of genetic diseases such as specific granule disease in humans. Therapeutic applications of antimicrobial peptides are currently under investigation.  相似文献   

5.
With the widespread ban on the use of antibiotics in swine feed, alternative measures need to be sought to maintain swine health and performance. Antimicrobial peptides (AMPs) are part of the nonspecific defense system and are natural antibiotics produced by plants, insects, mammalians, and micro-organisms as well as by chemical synthesis. Due to their broad microbicidal activity against various fungi, bacteria and enveloped viruses, AMPs are a potential alternative to conventional antibiotics for use in swine production. This review focuses on the structure and mechanism of action of AMPs, as well as their effects on performance, immune function and intestinal health in pigs. The aim is to provide support for the application of AMPs as feed additives replacing antibiotics in swine nutrition.  相似文献   

6.
ABSTRACT: Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, have been identified in chickens. As a first step to understand their role in early innate host defense of chickens, we examined the tissue and developmental expression patterns of all four cathelicidins. Real-time PCR revealed an abundant expression of four cathelicidins throughout the gastrointestinal, respiratory, and urogenital tracts as well as in all primary and secondary immune organs of chickens. Fowlicidins 1 to 3 exhibited a similar tissue expression pattern with the highest expression in the bone marrow and lung, while cathelicidin B1 was synthesized most abundantly in the bursa of Fabricius. Additionally, a tissue-specific regulatory pattern was evident for all four cathelicidins during the first 28 days after hatching. The expression of fowlicidins 1 to 3 showed an age-dependent increase both in the cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after hatching, with a gradual decline by day 28. An abrupt augmentation in the expression of fowlicidins 1 to 3 was also observed in the cecum on day 28, while the highest expression of cathelicidin B1 was seen in both the lung and cecal tonsil on day 14. Collectively, the presence of cathelicidins in a broad range of tissues and their largely enhanced expression during development are suggestive of their potential important role in early host defense and disease resistance of chickens.  相似文献   

7.
Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, have been identified in chickens. As a first step to understand their role in early innate host defense of chickens, we examined the tissue and developmental expression patterns of all four cathelicidins. Real-time PCR revealed an abundant expression of four cathelicidins throughout the gastrointestinal, respiratory, and urogenital tracts as well as in all primary and secondary immune organs of chickens. Fowlicidins 1 to 3 exhibited a similar tissue expression pattern with the highest expression in the bone marrow and lung, while cathelicidin B1 was synthesized most abundantly in the bursa of Fabricius. Additionally, a tissue-specific regulatory pattern was evident for all four cathelicidins during the first 28 days after hatching. The expression of fowlicidins 1 to 3 showed an age-dependent increase both in the cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after hatching, with a gradual decline by day 28. An abrupt augmentation in the expression of fowlicidins 1 to 3 was also observed in the cecum on day 28, while the highest expression of cathelicidin B1 was seen in both the lung and cecal tonsil on day 14. Collectively, the presence of cathelicidins in a broad range of tissues and their largely enhanced expression during development are suggestive of their potential important role in early host defense and disease resistance of chickens.  相似文献   

8.
牛蛙(Rana catesbeiana)蛙皮抗菌肽基因的克隆、测序及其表达   总被引:2,自引:3,他引:2  
利用RT—PCR的方法从牛蛙皮肤组织中克隆到大小为270bp的片段RCABP,将其克隆到pGEM—T载体,测序获得1个新的碱基序列。将此基因克隆到原核表达载体pQE一80L,获得融合表达质粒pQE一80L/DHFR/ABP,在1%IPTG诱导下进行表达。SDS—PAGE检测表明,重组蛙皮抗菌肽蛋白的表达量占菌体总蛋白的24%,以包涵体形式存在。体外抑菌试验表明,所构建的质粒能在大肠杆菌中表达具有体外抑菌活性的蛙皮抗菌肽,该融合蛋白具有良好的应用前景。  相似文献   

9.
Antimicrobial peptides form a crucial component of innate immune system, making it a highly effective first line of defense in animals. In the study, lingual antimicrobial peptide cDNA of Bubalus bubalis has been characterized. The characterized cDNA has complete ORF of 195 bases. The signal sequence of buffalo LAP comprised of N-terminal 1-20 amino acids and mature peptide from 23-64 amino acids. The percentage of similarity of buffalo LAP and buffalo EBD at nucleotide and amino acid level was 96.4% and 92.3% respectively. The identity of buffalo LAP with cattle LAP and TAP at nucleotide level was 92.8% and 90.3%. Both at nucleotide and amino acid level buffalo LAP is closer to buffalo EBD followed by cattle LAP and TAP. Phylogenetic tree at nucleotide and amino acid level also showed close relationship of buffalo LAP with buffalo EBD, cattle LAP and TAP. The synthesized LAP fragment had antibacterial activity.  相似文献   

10.
抗菌肽是上个世纪70年代由瑞典科学家Boman H G首次发现的,其具有优良的光谱抗菌性能,无残留,不会导致耐药菌株的出现,是目前抗生素类较有潜力的替代品。早在上世纪80年代,人们就试图通过转基因等生物工程技术改良物种或大量表达该类物质,目前已有众多的表达体系和转基因动植物研究成功,并有一些抗菌肽类药物投入临床使用。文中综述了近年来国内外关于抗菌肽的分离提取、体外表达和转基因动植物技术,主要论述该物质在基因和生物工程方面研究进展,从而为其规模化生产利用提供参考和借鉴。  相似文献   

11.
Antimicrobial peptides (AMP) are important components of the host innate immune response, as they exert broad-spectrum antimicrobial activities against pathogenic microbes. The AMP allow housefly larva (maggots) to live in harsh environments filled with pathogenic bacteria. In this study, maggot AMP were induced by incubation with inactivatedSalmonella pullorum and crudely extracted. The concentration and antimicrobial activity of the maggot AMP were then measured. In bird experiments, chickens were artificially infected withS. pullorum, and the maggot AMP extracts were used to treat the infected chickens. The expression level of AMP was significantly enhanced byS. pullorum stimulation, and the antibiotic activity of theS. pullorum-induced AMP was significantly stronger than that of the noninduced AMP, especially againstS. pullorum. In the bird experiments, based on survival rate, blood indicators, and intestinal bacterial changes, maggot AMP and antibiotics were successful in treating theS. pullorum-infected chickens. In conclusion, AMP have the potential for further development as a convenient, alternative antibiotic strategy to reduce the use of antibiotics and disease resistance.  相似文献   

12.
为了给表达高活性的抗菌肽Hadrurin提供开发应用的依据,进一步为用基因工程方法生产具有多种生物活性的抗菌肽Hadrurin蛋白提供研究基础,本研究表达获得重组抗菌肽Hadrurin(rHadrurin)蛋白的基础上,将纯化的rHadrurin蛋白进行肠激酶酶切,恢复其天然活性结构。用最小抑菌浓度(MIC)和最小杀菌浓度(MBC)方法检测抗菌肽Hadrurin在不同剂量、不同pH值、不同保存温度下对鸡致病性大肠杆菌和金黄色葡萄球菌的抑菌活性及杀菌活性。并以小鼠为动物模型,进行抗菌肽rHadrurind对小鼠的体内保护实验。结果表明抗菌肽rHadrurin对上述细菌的最小抑菌范围为1.32μg/mL~4.32μg/mL,最小杀菌范围为1.77μg/mL~8.54μg/mL,而且-70℃~100℃及在pH3~pH10条件下仍具有高效抗菌活性。240μg/只剂量的抗菌肽蛋白可有效预防保护小鼠免受致死剂量鸡致病性大肠杆菌攻击,320μg/只剂量可达到保护率85%以上。  相似文献   

13.
抗菌肽在哺乳动物防御系统中的作用   总被引:3,自引:0,他引:3  
抗菌肽是近年来发现的广泛存在于自然界的一类阳离子抗菌活性肽,它们在宿主先天性免疫和适应性免疫中有重要作用。多数抗菌肽具有分子小、带正电、两亲性、抗菌谱广等共同特点。防御素和calhelicidins是哺乳动物的两大主要抗菌肽家族,它们通过抵抗致病菌入侵为宿主提供了第一道防线而对宿主具有先天的抗菌防御功能,其中一些多肽对未分化的树突状细胞、淋巴细胞有趋化性,另外还有诱导细胞因子生成、肥大细胞脱粒等作用,从而表明这些多肽能动员并增强宿主的先天性免疫和适应性免疫。本文主要对哺乳动物抗菌肽的一般性质、基因及其表达、在宿主防御中的作用、作用机理及研究前景进行了概述。  相似文献   

14.
15.
《中国兽医学报》2019,(6):1239-1244
人和动物的肠道内定植着数量众多的微生物,它们对宿主正常生理功能至关重要。肠道菌群与宿主不断地进行相互作用,形成互利共生的关系,影响机体健康。病毒感染会通过影响肠道菌群进而影响机体的免疫和代谢功能。肠道菌群或益生菌也会影响病毒的感染和疫苗的免疫效果。了解病毒与肠道菌群或益生菌的相互作用及肠道菌群对疫苗免疫效果的影响,有助于揭示疾病的发病机制,通过调控肠道菌群来治疗疾病。现主要从病毒与肠道菌群的相互作用,益生菌对病毒感染的影响和肠道菌群对疫苗免疫效果的影响三方面进行综述。  相似文献   

16.
前期采用差减杂交的方法筛选到新型欧洲鳗鲡抗菌肽elecilin,其基因全长为477 bp,编码159个氨基酸,理论分子量约17.4 kDa。为了获得具活性的大量表达的抗菌肽,本研究利用毕赤酵母表达了elecilin。首先将elecilin基因克隆至酵母分泌表达载体pPICZaA,构建了重组分泌表达质粒pPICZaA-elecilin,电击转化毕赤酵母X-33。经Zeocin筛选和PCR鉴定,获得重组酵母菌,通过甲醇诱导,SDS-PAGE和Western blot鉴定,证实诱导后的培养基中存在与预期分子量大小相一致的蛋白,能被His-tag单克隆抗体识别,表明利用酵母成功表达了欧洲鳗鲡抗菌肽elecilin。这为进一步研究该抗菌肽的功能及作为饲料添加剂的应用奠定了基础。  相似文献   

17.
抗菌脂肽对肉鸡抗氧化能力及血清生化指标的影响   总被引:1,自引:0,他引:1  
为研究不同水平抗菌脂肽对肉鸡抗氧化能力及血清生化指标的影响,将1日龄健康AA肉鸡600只,随机分为5组:对照组(不含抗菌脂肽及抗生素)、抗生素对照组及在基础日粮中分别添加4 000、8 000和12 000 U/kg抗菌脂肽组,试验期为42 d。结果发现:4 000 U/kg抗菌脂肽能显著提高血清T-AOC及肝脏SOD水平,8 000 U/kg抗菌脂肽能显著提高血清SOD水平,同时能显著降低肝脏MDA水平。4 000 U/kg抗菌脂肽能显著提高血清TP及GLOB水平,而12 000 U/kg抗菌脂肽能提高血清GOT及GPT水平,但差异不显著。抗菌脂肽对血清UN及TC含量无明显影响。结果表明适宜的抗菌脂肽添加量(4 000 U/kg)能提高肉鸡抗氧化机能,且能促进蛋白质的代谢。  相似文献   

18.
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.  相似文献   

19.
家蝇抗菌肽因具有独特的防御机制且不易产生耐药性而成为国内外科研工作者的研究热点,其在动物疫病防治上的应用也越发引人关注。利用基因工程技术获取家蝇抗菌肽能克服传统方法产量低、耗时长、无法实现大规模生产等缺点,是目前获取家蝇抗菌肽最为有效的方法。对家蝇基因工程抗菌肽的分类、编码基因的获得和表达以及生物活性方面进行了综述,以期为兽医临床早日研制出高效、低毒且不易产生耐药性的新兽药提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号