首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weaning stress may cause reduced energy intake for maintenance of mucosal structure.Gln,Glu,and Asp are major energy sources for the small intestine.This study investigated whether Gln,Glu,and Asp improve the intestinal morphology via regulating the energy metabolism in weaning piglets.A total of 198 weaned piglets were assigned to 3 treatments:Control(Basal diet+1.59%L-Ala);T1(Basal diet+1%L-Gln+0.5%L-Glu+0.1%L-Asp);T2(Low energy diet+1%L-Gln+0.5%L-Glu+0.1%L-Asp).Jejunum and ileum were obtained on d 5 or 21 post-weaning.T1 enhanced growth performance.T1 and T2 treatments improved small intestinal morphology by increasing villus height,goblet cell number and decreasing crypt depth.Days post-weaning affected the efficacy of T2,but not T1,on energy metabolism.At normal energy supplementation,Gln,Glu,and Asp restored small intestinal energy homeostasis via replenishing the Krebs'cycle and down-regulating the AMPK(adenosine monophosphate activated protein kinase)pathway.As these are not sufficient to maintain the intestinal energy-balance of piglets fed with a low energy diet on d 5 post-weaning,the AMPK,glycolysis,beta-oxidation,and mitochondrial biogenesis are activated to meet the high energy demand of enterocytes.These data indicated that Gln,Glu,and Asp could restore the energy homeostasis of intestinal mucosa of weaning piglets under normal energy fed.Low energy feeding may increase the susceptibility of piglets to stress,which may decrease the efficacy of Gln,Glu,and Asp on the restoration of energy balance.These findings provide new information on nutritional intervention for insufficient energy intake in weaning piglets.  相似文献   

2.
To evaluate the effects of gelatin and starch encapsulated vitamin A on growth performance, immune status and antioxidant capacity in weaned piglets, a total of 96 weaned piglets (body weight = 9.11 ± 0.03 kg, 30-d-old) were randomly allotted to 3 treatments with 4 replications of 8 piglets each. The 3 treatments were control diet (basal diet without addition of vitamin A), gelatin vitamin A diet (basal diet + 13,500 IU/kg gelatin encapsulated vitamin A), and starch vitamin A diet (basal diet + 13,500 IU/kg starch encapsulated vitamin A), respectively. The results showed that piglets fed starch vitamin A diet had significantly higher final body weight and average daily gain compared to those in control and gelatin vitamin A groups (P < 0.05). Gelatin and starch vitamin A supplementation both highly increased serum retinol concentration and immunoglobulin (Ig) M level when compared with the control group (P < 0.05). Additionally, serum IgA level and glutathione peroxidase (GSH-Px) activity were significantly increased by gelatin vitamin A diet on d 21 and starch vitamin A diet on d 42, respectively (P < 0.05). These results demonstrated that dietary supplementation of vitamin A could improve immune function and antioxidant capacity in weaned piglets, and starch vitamin A is better than gelatin vitamin A, especially in promoting the growth performance of piglets.  相似文献   

3.
The current study was conducted to investigate the protective efficiency of dietary lycopene (LYC) supplementation on growth performance, intestinal morphology, and digestive enzyme activities aflatoxinB1 (AFB1) challenged broilers. A total of 240 days old Arber across male broiler chicks were randomly allocated in five treatments and six replicates (eight birds per replicate); feed and water were provided ad libitum during the 42 days experiment. The treatment diets were as follows: (i) Basal diet (control), (ii) Basal diet + 100 µg/kg AFB1 contaminated diet, (iii) Basal diet + 100 µg/kg AFB1 + 100 mg/kg LYC1, (iv) Basal diet + 100 µg/kg AFB1 + 200 mg/kg LYC2, and (v) Basal diet + 100 µg/kg AFB1 + 400 mg/kg LYC3. The results showed that the addition of LYC to AFB1 contaminated broiler diets significantly increased (p < .05) average daily gain (ADG) and decreased feed conversion ratio (FCR) compared to the AFB1 diet. AFB1 diet decreased the intestinal villus height (VH) and crypt depth ratio (VCR) while increasing the crypt depth (CD). However, dietary LYC supplemented diets relieved the intestinal morphological alterations. Dietary LYC supplementation (200 and 400 mg/kg) significantly improved (p < .05) intestinal digestive enzyme amylase and lipase activities with AFB1 contaminated diet. These findings suggested that LYC is a promising feed supplement in the broiler industry, alleviating the harmful effects of AFB1.  相似文献   

4.
The present experiment was conducted to evaluate the effect of dietary supplementation with some feed additives (potassium sorbate; Sor, hydrated sodium calcium almuniosilicate; Hsc and L-methionine; L-M) against aflatoxin B1 (AF) toxicity in rabbits. A total of 72 growing rabbits (5-week-old) were distributed into six equal groups (4 replicates with 3 rabbits each). The experimental groups are as follows: control group, AF group (supplemented with AF 0.3 mg/kg diet), AF + Sor group (AF 0.3 mg/kg diet + Sor 2 g/kg diet), AF + Hsc group (AF 0.3 mg/kg diet + Hsc 5 g/kg diet), AF + L-M group (AF 0.3 mg/kg diet + L-M 8 g/kg diet) and AF + Mix group (AF 0.3 mg/kg diet + 2 Sor + 5 Hsc + 8 L-M g/kg diet). Live body weight and weight gain at 13 weeks of age were significantly reduced by AF. Feed intake at 13 weeks of age was decreased in AF, AF + Hsc and AF + Mix compared to the control. AF, AF + Hsc and AF + Mix showed the lowest total antioxidant capacity compared to the control. The highest level of reactive oxygen species and 8-Hydroxy-2-desoxyguanosine was observed in AF group. Using of other supplements with AF increased immunoglobulinM than AF alone. In conclusion, dietary supplementation of Sor, L-M, Hsc or their mixture was effective in reducing the adverse effects of AF on performance, antioxidant and immune status of rabbits with more better improvement obtained by Sor or L-M separately.  相似文献   

5.
Glutamic acid (Glu) and aspartic acid (Asp) are acidic amino acids with regulatory roles in nutrition, energy metabolism, and oxidative stress. This study aimed to evaluate the effects of low-protein diets supplemented with Glu and Asp on the intestinal barrier function and energy metabolism in weaned piglets challenged with hydrogen peroxide (H2O2). Forty piglets were randomly divided into 5 groups: NC, PC, PGA, PG, and PA (n = 8 for each group). Pigs in the NC and PC groups were fed a low-protein diet, while pigs in the PGA, PG, or PA groups were fed the low-protein diet supplemented with 2.0% Glu +1.0% Asp, 2.0% Glu, or 1.0% Asp, respectively. On day 8 and 11, pigs in the NC group were intraperitoneally injected with saline (1 mL/kg BW), while pigs in the other groups were intraperitoneally administered 10% H2O2 (1 mL/kg BW). On day 14, all pigs were sacrificed to collect jejunum and ileum following the blood sample collection in the morning. Notably, low-protein diets supplemented with Glu or Asp ameliorated the intestinal oxidative stress response in H2O2-challenged piglets by decreasing intestinal expression of genes (P < 0.05) (e.g., manganese superoxide dismutase [MnSOD], glutathione peroxidase [Gpx]-1, and Gpx-4) encoding oxidative stress-associated proteins, reducing the serum concentration of diamine oxidase (P < 0.05), and inhibiting apoptosis of the intestinal epithelium. Glu and Asp supplementation attenuated the upregulated expression of energy metabolism-associated genes (such as hexokinase and carnitine palmitoyltransferase-1) and the H2O2-induced activation of acetyl-coenzyme A carboxylase (ACC) in the jejunum and adenosine monophosphate-activated protein kinase–acetyl-ACC signaling in the ileum. Dietary Glu and Asp also ameliorated intestinal barrier damage as indicated by restored intestinal histology and morphology. In conclusion, low-protein diets supplemented with Glu and Asp protected against oxidative stress-induced intestinal dysfunction in piglets, suggesting that this approach could be used as a nutritional regulatory protectant against oxidative stress.  相似文献   

6.
This study was conducted to evaluate the effects of composite antimicrobial peptide (CAP) on growth performance and health status in weaned piglets. Over 28 days, 36 weaned piglets (body weight, 10.58 ± 0.99 kg) underwent three treatments: negative control (NC, basal diet), positive control (PC, basal diet + 20 mg/kg colistin sulphate + 50 mg/kg kitasamycin), and CAP treatment (CAP, basal diet with 400 mg/kg CAP). Average daily gain of piglets fed the CAP diet was greater (< 0.05) than that of piglets fed the PC or NC diet during days 1–7, 8–14 and 15–21. Diarrhea rates of piglets fed the CAP or PC diet were lower (< 0.05) than those of NC‐fed piglets during days 1–7. Apparent total tract digestibility for dry matter and crude ash in CAP‐fed piglets was greater (< 0.05) than that of NC‐fed piglets. In the CAP group, Lactobacillus and Bifidobacterium counts were greater (< 0.05) and Escherichia coli counts were lower (< 0.05) than numbers for the NC group. Our results indicate that dietary CAP had beneficial effects on growth performance and health status in weaned piglets.  相似文献   

7.
The objective of this experiment was to evaluate the effects of dietary supplementation with porous zinc oxide (HiZox) on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. A total of 128 weaned piglets [(Landrace × Yorkshire) × Duroc] with an average body weight (BW) of (6.55 ± 0.25 kg; 21 d of age) were randomly assigned to four dietary treatments: (1) a corn‐soybean basal diet; (2) basal diet + 3,000 mg/kg conventional ZnO; (3) basal diet + 200 mg/kg HiZox; (4) basal diet + 500 mg/kg HiZox. The experiments lasted for 28 days. Incremental HiZox in the diet increased ADG (linear p = 0.015; quadratic p = 0.043) and ADFI (linear p = 0.027; quadratic p = 0.038), and the diarrhea index decreased linearly and quadratically (p < 0.01) as HiZox supplemented increased. Furthermore, supplementation with HiZox increased the amounts of Lactobacillus spp. (p < 0.05) in the ileum and cecum in comparison with that of control treatment or 3,000 mg/kg ZnO treatment, while decreased the populations of Escherichia coli, Clostridium coccoides, and Clostridium. leptum subgroup (p < 0.05) in the ileum and cecum relative to those in control treatment. The addition of HiZox increased the villus height and villus‐to‐crypt ratio (VC) of duodenum, jejunum, and ileum (p < 0.05), while decreased the crypt depth of jejunum (p < 0.05) and tended to reduce the crypt depth of duodenum (p < 0.10) compared with the control treatment. Piglets fed with 500 mg/kg HiZox had lower serum D‐lactate and diamine oxidase (DAO) than those fed with basal control diet or 3,000 mg/kg ZnO diet (p < 0.01). The results suggested that supplementation with HiZox modulated intestinal microbial composition and improved intestinal morphology, which may exert protective effects on the integrity of the mucosal barrier function of weaned piglets, was as efficacious as pharmaceutical doses of ZnO in enhancing growth performance, indicating that the HiZox may be a promising alternative to pharmaceutical doses of ZnO.  相似文献   

8.
This study was conducted to investigate the effects of dietary supplementation with yeast culture (YC) and organic selenium (Se) during late gestation and lactation on reproductive performance, milk quality, piglet preweaning performance, antioxidant capacity, and secretion of immunoglobulin in multiparous sows. A total of 160 healthy cross-bred sows (Landrace × Yorkshire, mean parity 4.1 ± 0.3) were randomly assigned to 4 groups as follows: 1) high nutrient (HN), 3,420 kcal/kg digestible energy (DE) and 18.0% crude protein (CP); 2) low nutrient (LN), 3,240 kcal/kg DE and 16.0% CP; 3) LN + YC, LN diet + 10 g/kg YC; 4) LN + YC + Se, LN diet + 10 g/kg YC + organic Se (1 mg/kg Se). Feeding trials of sows started from d 85 of pregnancy to d 35 of lactation. Compared with sows in the LN group, sows fed the LN + YC + Se diet had greater litter weaning weight, average litter gain, and milk fat content (14-d and 25-d milk) (P < 0.05). The content of malonaldehyde (MDA) (colostrum and 14-d milk) was lesser, and the activity of glutathione peroxidase (GSH-Px) (colostrum and 25-d milk) was greater when sows were fed the LN + YC + Se diet, compared with sows fed the LN diet (P < 0.05). Supplementation of YC and organic Se in the nutrient-restricted diet improved sows’ reproductive performance and pig weaning body weight by enhancing the antioxidant capacity and fat content in milk.  相似文献   

9.
The objective of this study was to evaluate the effects of feeding vitamin and mineral (VTM) supplement and (or) rate of gain (GAIN) during early gestation on amino acid (AA) concentrations in allantoic fluid (ALF) and amniotic fluid (AMF) and maternal serum. Seventy-two crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement with main effects of VTM supplement (VTM or NoVTM) and rate of gain (GAIN; low gain [LG], 0.28 kg/d, vs. moderate gain [MG], 0.79 kg/d). The VTM treatment (113 g•heifer−1•d−1, provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM in Nutrient requirements of beef cattle. Washington, DC: The National Academies Press. doi:10.17226/19014, 2016) was initiated 71 to 148 d before artificial insemination (AI). To complete the factorial arrangement of treatments, at breeding heifers were either maintained on the basal diet (LG), or received MG diet which was implemented by adding a protein/energy supplement to the LG diet. Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and maternal serum, ALF, and AMF were collected. Samples were analyzed for concentrations of neutral AA: Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val; cationic AA: Arg, His, and Lys; and anionic AA: Asp and Glu. In serum, a VTM × GAIN interaction (P = 0.02) was observed for Glu, with greater concentrations for VTM-LG than VTM-MG. Concentrations of serum Cys, Met, and Trp were greater (P ≤ 0.03) for MG than LG. In ALF, concentrations of Glu were affected by a VTM × GAIN interaction, where VTM-MG was greater (P < 0.01) than all other treatments. Further, ALF from VTM had increased (P ≤ 0.05) concentrations of His, Asp, and 12 of the 14 neutral AA; whereas GAIN affected concentrations of Arg, Cys, and Asp, with greater concentrations (P ≤ 0.05) in MG heifers. In AMF, AA concentrations were not affected (P ≥ 0.10) by VTM, GAIN, or their interaction. In conclusion, increased concentrations of AA in maternal serum and ALF of beef heifers were observed at d 83 of gestation in response to VTM supplementation and rate of gain of 0.79 kg/d, which raises important questions regarding the mechanisms responsible for AA uptake and balance between the maternal circulation and fetal fluid compartments.  相似文献   

10.
The abnormalities in intestinal morphology and digestive function during weaning are associated with the loss of milk‐borne growth factors. Epidermal growth factor (EGF) has been shown to stimulate the growth of animals. This study was to determine the effect of dietary EGF on nutrient digestibility, intestinal development and the expression of genes encoding nutrient transporters in weaned piglets. Forty‐two piglets were weaned at 21 days and assigned to one of three treatment groups: (1) basal diet (control), (2) basal diet + 200 µg/kg EGF or (3) basal diet + 400 µg/kg EGF. Each treatment consisted of 14 replicates, and seven piglets from each treatment were sampled on day 7 and 14. The EGF supplementation significantly elevated (p < 0.05) the coefficients of total tract apparent digestibility of crude protein, calcium and phosphorus, but tended to decrease sucrase activity (< 0.10) than the control group. At day 7 post‐weaning, animals receiving EGF diets showed a tendency (p < 0.10) towards greater ileal villus height (VH), jejunal crypt depth (CD) and duodenal VH:CD when compared with the control group. Moreover, the mRNA levels of glucose transporter 2 (Slc2a2), neutral amino acid transporter (Slc6a19) and calbindin D9k (S100G) tended to be higher (p < 0.10) for EGF groups than the control group. By day 14, EGF supplementation markedly enhanced (p < 0.05) the VH, CD and VH:CD in the jejunum compared to the control group. This addition also up‐regulated (p < 0.05) the mRNA level and the protein abundance of peptide transporter 1 than the control group. These findings demonstrated that dietary EGF beneficially enhanced nutrient digestibility, improved intestinal development and increased the mRNA expression of nutrient transporters in weaned piglets.  相似文献   

11.
Plant extracts are considered to be an effective alternative to antibiotics in response to weaning stress in piglets. This study evaluated the effect of Illicium verum extracts (IVE) or Eucommia ulmoides leaf extracts (ELE) on growth performance, serum and liver antioxidant ability of nursery piglets, as well as the difference of IVE and ELE on Duroc × Landrace × Yorkshire (DLY) and Chinese native Licha-black (LCB) piglets. A total of 96 nursery piglets (48 DLY and 48 LCB piglets) with an average body weight of 11.22 ± 0.32 kg were randomly divided into four treatments in a 2 × 4 factorial design. Each treatment had four replicates with 3 DLY and 3 LCB piglets per replicate respectively. Treatments included: basal diet, basal diet + 500 mg/kg IVE, basal diet + 250 mg/kg ELE and basal diet + 50 mg/kg chlortetracycline (CHL). All piglets were housed individually for the 42 days trial period after 7 days adaptation. Results showed that there were significant interactions (p < .05) between piglets species and dietary treatments in average daily gain (ADG) and feed efficiency, serum and hepatic glutathione peroxidase (GSH-Px) and malondialdehyde (MDA), hepatic integral optical density (IOD) of α-tumour necrosis factor (TNF-α), hepatic relative mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/TNF-α and protein expression of TNF-α. Regardless of piglets species, supplementation with IVE and ELE increased (p < .05) ADG and feed efficiency, T-SOD and GSH-Px in serum and liver, hepatic IOD of Nrf2, hepatic mRNA and protein expression of Nrf2/TNF-α. However, CHL treatment resulted in lower (p < .05) serum GSH-Px and hepatic mRNA and protein expression of Nrf2/TNF-α, and higher hepatic MDA and IOD of TNF-α. Compared to LCB, DLY piglets had higher (p < .05) ADG and feed efficiency, serum and hepatic MDA, and protein expression of TNF-α, but lower (p < .05) ADFI, liver index, serum and hepatic GSH-Px, hepatic IOD of TNF-α, mRNA expressions of Nrf2/TNF-α were observed. In conclusion, Illicium verum (500 mg/kg) and Eucommia ulmoides leaf (250 mg/kg) extracts can increase the growth performance and antioxidant ability of DLY and LCB piglets, while chlortetracycline produces undesirable side-effects on the antioxidant ability of DLY and LCB piglets. Illicium verum and Eucommia ulmoides leaf extracts produced different antioxidant effects in DLY and LCB piglets with the Chinese native Licha-black pig responding better than Duroc × Landrace × Yorkshire.  相似文献   

12.
The current study was explored to examine the impacts of dietary inclusion of mixture of black (BPO) and red pepper (RPO) oils as growth promoters on growth, carcass, blood haematology, serum chemistry, immunity and antioxidative status of New Zealand White rabbits (NZW). A number total of 100 5‐week‐old NZW growing weaned rabbits were randomly allocated into four treatment groups in a complete randomized experiment. The dietary treatment groups were as follows: control: basal diet; BRP0.5: basal diet + 0.25 g BPO + 0.25 g RPO/kg diet; BRP1.0: basal diet + 0.50 g BPO + 0.50 g RPO/kg diet; and BRP1.5: basal diet + 0.75 g BPO + 0.75 g RPO/kg diet. Rabbits fed the highest level of BRP mixture were the heaviest, while the control rabbits were the lightest. During 5–9 weeks of age, a gradual improvement in feed conversion ratio (FCR) was noticed with increasing BRP level. The control group excelled all BRP groups regarding the majority of blood haematological parameters. Liver function was better in rabbits fed BRP enriched diets than the control. A gradual depression (p < 0.05 or 0.01) in serum lipids regardless high‐density lipoprotein (HDL) were recorded with elevating BRP level in the diet. The supplementation of BRP mixture enhanced the immune function and serum superoxide dismutase (SOD) activities and depressed serum malondialdehyde (MDA) in comparison with control. It could be concluded that dietary BRP mixture can affect some of growth traits, improve the immunity and antioxidant parameters, lower lipid profile and lipid peroxidation. Based on the study results, the recommended level of BRP mixture is 1.5 g/kg diet.  相似文献   

13.
This study was conducted to evaluate the alleviation of Bacillus subtilis ANSB01G culture as zearalenone (ZEA) biodegradation agent on oxidative stress, cell apoptosis and fecal ZEA residue in the first parity gestation sows during the gestation. A total of 80 first-parity gilts (Yorkshire × Landrace) were randomly allocated to 4 dietary treatments with 20 replications per treatment and one gilt per replicate. The dietary treatments were as follows: CO (positive control); MO (negative control, ZEA level at 246 μg/kg diet); COA (CO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet); MOA (MO + ZEA level at 260 μg/kg diet + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet). The experiment lasted for the whole gestation period of sows. Results showed that feeding the diet naturally contaminated with low-dose ZEA caused an increase of cell apoptosis in organ and the residual ZEA in feces as well as a decrease of antioxidant function in serum. The addition of B. subtilis ANSB01G culture in the diets can effectively alleviate the status of oxidative stress and cell apoptosis induced by ZEA in diets of gestation sows, as well as decrease the content of residual ZEA in feces.  相似文献   

14.
《动物营养(英文)》2021,7(4):1087-1094
The effects of selenium (Se) yeast supplementation on performance, blood biochemical and antioxidant parameters, and milk Se content and speciation were evaluated. Thirty-six mid-lactation Holstein dairy cows were randomly assigned to 1 of 3 treatments: 1) control (basal diet containing Se at 0.11 mg/kg DM), 2) basal diet + 0.5 mg supplemental Se/kg DM (SY-0.5), and 3) basal diet + 5 mg supplemental Se/kg DM (SY-5). Selenium was supplemented as Se yeast. The trial consisted of a 1-week pretrial period and an 8-week experimental period. Milk somatic cell score decreased with SY-5 supplementation (P < 0.05), but other performance parameters were not affected (P > 0.05). The serum Se concentration increased with the increasing levels of Se yeast supplementation (P < 0.05), however, blood biochemical parameters showed few treatment effects. The antioxidant capacity of dairy cows was improved with Se yeast supplementation reflected in increased serum glutathione peroxidase activity (P < 0.05) and total antioxidant capacity (P = 0.08), and decreased malondialdehyde concentration (P < 0.05). Milk total Se concentration increased with Se dose (P < 0.05). Also, the selenomethionine concentration increased with Se dose from 13.0 ± 0.7 μg/kg in control to 33.1 ± 2.1 μg/kg in SY-0.5 and 530.4 ± 17.5 μg/kg in SY-5 cows (P < 0.05). Similarly, selenocystine concentration increased from 15.6 ± 0.9 μg/kg in control and 18.9 ± 1.1 μg/kg in SY-0.5 to 22.2 ± 1.5 μg/kg in SY-5 cows (P < 0.05). In conclusion, Se yeast is a good organic Se source to produce Se-enriched cow milk with increased Se species including selenomethionine and selenocystine. The results can provide useful information on milk Se species when a high dose Se yeast was supplemented in the cow diet.  相似文献   

15.
This experiment was conducted to investigate the effect of dietary 1α-hydroxycholecalciferol (1α-OH-D3) in calcium (Ca)- and phosphorous (P)-deficient diets on growth performance, carcass characteristics, tibia related parameters, and immune responses of broiler chickens. A total of 280 one-day-old broiler chickens (Ross 308) were assigned to 20 floor pens and 4 dietary treatments with 5 replicates. Dietary treatments consisted of starter diets (starter diet of treatment A: 1% Ca, 0.73% total phosphorus [tP]; starter diet of treatment B: 0.85% Ca, 0.64% tP + 5 μg/kg of 1α-OH-D3; starter diet of treatment C: 0.85% Ca, 0.59% tP + 5 μg/kg of 1α-OH-D3; starter diet of treatment D: 0.85% Ca, 0.54% tP + 5 μg/kg of 1α-OH-D3), grower diets (grower diet of treatment A: 0.86% Ca, 0.68% tP; grower diet of treatment B: 0.73% Ca, 0.59% tP + 5 μg/kg of 1α-OH-D3; grower diet of treatment C: 0.73% Ca, 0.55% tP + 5 μg/kg of 1α-OH-D3; grower diet of treatment D: 0.73% Ca, 0.50% tP + 5 μg/kg of 1α-OH-D3) and finisher diets (finisher diet of treatment A: 0.81% Ca, 0.64% tP; finisher diet of treatment B: 0.68% Ca, 0.56% tP + 5 μg/kg of 1α-OH-D3; finisher diet of treatment C: 0.68% Ca, 0.52% tP + 5 μg/kg of 1α-OH-D3; finisher diet of treatment D: 0.68% Ca, 0.48% tP + 5 μg/kg of 1α-OH-D3). Results showed that body weight gain (BWG) and feed intake (FI) of broilers in treatment B were similar to those of broilers in treatment A at the end of the trial (P < 0.05). Broilers in treatments C and D had lower BWG and FI than those in treatment A during the whole trial (P < 0.05). Feed conversion ratio, carcass traits and relative weight of lymphoid organs were not affected by dietary treatments (P > 0.05). Dietary treatments had no significant effect on antibody titers against Newcastle and Influenza disease viruses as well as sheep red blood cells. Dietary treatments had no significant effects on tibia ash and tibial dyschondroplasia score. Broilers fed Ca-P deficient diets had lower tibia Ca and P than those in treatment A (P < 0.05). In conclusion, results indicated that broilers fed Ca-P deficient diets supplemented with 5 μg/kg 1α-OH-D3 failed to achieve the same tibia Ca and P values as broilers fed nonphytate phosphorus adequate diets.  相似文献   

16.
This study was to evaluate the effect of xylanase supplementation and the addition of live yeast, Saccharomyces cerevisiae, on growth performance and intestinal microbiota in piglets. One hundred and eighty commercial crossbred 23-d-old piglets (PIC 417) were sorted by initial BW and allocated to 3 treatments: control (CTR) diet, CTR diet supplemented with xylanase at 16,000 birch xylan units/kg (XYL) and XYL diet supplemented with live yeast (2 × 1010 CFU/g) at 1 kg/t (XYL + LY). Each treatment had 10 replicates, with 6 animals each. A sorghum-based diet and water were available ad libitum for 42 d of the study. Average daily gain (ADG) and average daily feed intake (ADFI) were measured from 0 to 42 d (23- to 65-d-old) and feed conversion ratio (FCR) calculated. At the end of the study, bacterial identification through 16S rRNA (V3 to V4) sequencing of the ileal and caecal digesta from one piglet per replicate was performed. No treatment effects were observed on ADFI. Pigs offered the live yeast in addition to the xylanase had increased ADG compared with those supplemented with xylanase alone (XYL + LY vs. XYL; P = 0.655). FCR was improved with XYL and XYL + LY compared with CTR (P = 0.018). Clostridiaceae counts in the ileum tended to reduce by 10% with XYL and 14% with XYL + LY compared to CTR (P = 0.07). XYL and XYL + LY increased the counts of Lactobacillaceae in the caecum compared with CTR (P < 0.0001). Dietary supplementation of live yeast combined with xylanase improved growth performance and microbial balance of piglets during the nursery phase.  相似文献   

17.
This study was conducted to evaluate the effects of dietary live yeast (LY) supplementation during late gestation and lactation on reproductive performance, colostrum and milk composition, blood biochemical and immunological parameters of sows. A total of 40 multiparous sows were randomly fed either the control (CON) diet or the CON diet supplemented with LY at 1 g/kg from d 90 of gestation to weaning. Results showed that the number of stillborn piglets and low BW piglets were significantly decreased in the LY-supplemented sows compared with sows in the CON group (P < 0.05). Moreover, the concentrations of protein, lactose and solids-not-fat were increased in the colostrum of LY-supplemented sows (P < 0.05). Interestingly, the plasma activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (γ-GGT) at d 1 of lactation and alanine aminotransferase (ALT) at weaning day were decreased by feeding LY diet (P < 0.05). Meanwhile, sows fed LY diet had higher plasma concentration of immunoglobulin G compared with sows fed CON diet at d 1 of lactation (P < 0.05). In conclusion, LY supplementation in maternal diets decreased the number of stillborn piglets and low BW piglets, improved colostrum quality and health status of sows.  相似文献   

18.
The primary aim of this experiment was to critically explore the relationship between the different levels of mixed organic acids (MOA) and growth performance, serum antioxidant status and intestinal health of weaned piglets, as well as to investigate the potential possibility of MOA alternative to antibiotics growth promoters (AGP). A total of 180 healthy piglets (Duroc × [Landrace × Yorkshire]; weighing 7.81 ± 1.51 kg each, weaned at d 28) were randomly divided into 5 treatments: 1) basal diet (CON); 2) CON + chlorinomycin (75 mg/kg) + virginiamycin (15 mg/kg) + guitaromycin (50 mg/kg) (AGP); 3) CON + MOA (3,000 mg/kg) (OA1); 4) CON + MOA (5,000 mg/kg) (OA2); 5) CON + MOA (7,000 mg/kg) (OA3). This study design included 6 replicates per treatment with 6 piglets per pen (barrow:gilt = 1:1) and the experiment was separated into phase 1 (d 1 to 14) and phase 2 (d 15 to 28). In phases 1, 2 and overall, compared with the CON, the feed conversion ratio (FCR) was reduced (P < 0.01) and the average daily gain (ADG) was increased (P < 0.05) in piglets supplemented with AGP, OA1 and OA2. The concentration of serum immunoglobulins G (IgG) was improved (P < 0.05) in piglets supplemented with OA2 in phase 2. In the jejunum and ileum, the villus height:crypt depth ratio was significantly increased (P < 0.01) in piglets fed AGP and OA1. The mRNA expression level of claudin-1 and zonula occludens-1 (ZO-1) (P < 0.01) was up-regulated in piglets supplemented with OA1 and OA2. The piglets fed AGP, OA1 and OA2 showed an increase (P < 0.05) in the content of acetate acid and total volatile fatty acids (TVFA) in the cecum, and butyric acid and TVFA in the colon compared with CON. Also, OA1 lowered (P < 0.05) the content of Lachnospiraceae in piglets. These results demonstrated that MOA at 3,000 or 5,000 mg/kg could be an alternative to antibiotics due to the positive effects on performance, immune parameters, and intestinal health of weaned piglets. However, from the results of the quadratic fitting curve, it is inferred that MOA at a dose of 4,000 mg/kg may produce a better effect.  相似文献   

19.
This study was conducted to evaluate the effect of dietary fenugreek seed extract (FSE) on growth performance, apparent total tract digestibility (ATTD), diarrhoea scores, blood profiles, faecal microflora and faecal gas emission in weanling pigs. A total of 135 weanling pigs [(Yorkshire × Landrace)  × Duroc] with an average BW of (7.96 ± 1.03 kg; 28 days of age) were used in a 42‐day study. Piglets were randomly allotted to three experimental diets with nine replicate pens and five pigs per pen. Dietary treatments were as follows: CON, basal diet; FSE1, basal diet + 0.1% FSE; FSE2, basal diet + 0.2% FSE. Pigs were fed with phase 1 (0–14 days) and phase 2 (14–42 days) diets in the form of mash. Average daily gain (ADG) was linearly increased (p = 0.031) by FSE supplementation compared with CON diet during days 0–14. From days 14–42, FSE2 diet had increased ADG and growth efficiency (G/F) compared with the CON diet (p = 0.014 and 0.026 respectively). Moreover, ADG and G/F were increased by FSE supplementation during days 0–42 (linear, p = 0.037 and 0.014 respectively). Energy digestibility was higher (linear, p = 0.030) by FSE supplementation at 6 weeks. On day 42, dietary supplementation of FSE linearly increased red blood cells (RBC) and immunoglobulin G (IgG) concentration (p = 0.042 and 0.038 respectively). Piglets fed FSE2 diet had higher (linear, p = 0.025) serum high‐density lipoprotein cholesterol (HDL‐C) concentration compared with those fed CON diet. However, piglets fed FSE2 diet had linearly reduced faecal ammonia (NH3) and hydrogen sulphide (H2S) gas emission compared with those fed the CON diet (p = 0.018 and 0.010 respectively). In conclusion, FSE supplementation increased the performance and reduced faecal gas emission in weanling pigs.  相似文献   

20.
《动物营养(英文)》2021,7(4):1173-1181
This study was conducted to investigate the effects of spray-dried porcine plasma protein (SDPP) or spray-dried chicken plasma protein (SDCP) supplementation in diets without the inclusion of antibiotics and zinc oxide (ZnO) on growth performance, fecal score, and fecal microbiota in early-weaned piglets. A total of 192 healthy weaning piglets (Duroc × Landrace × Yorkshire, 21 d old) were blocked by BW (6.53 ± 0.60 kg) and randomly assigned to 4 dietary treatments: negative control (NC, basal diet), positive control (PC), basal diet + ZnO at 2 g/kg and antibiotics at 0.8 g/kg), SDPP (containing 5% SDPP), and SDCP (containing 5% SDCP). The experiment lasted 14 d. The SDPP group had higher (P < 0.05) final BW, average daily gain and average daily feed intake than the NC and SDCP groups. The percentage of piglets with fecal scores at 2 or ≥2 was higher (P < 0.05) in the NC and SDCP groups than in the PC group. A decreased (P < 0.05) bacterial alpha diversity and Bacteroidetes abundance, but increased (P < 0.05) Firmicutes abundance were observed in the PC and SDPP groups when compared to the NC group. The relative abundance of Lactobacillus was higher (P < 0.05) in the SDPP than in the SDCP group, and that of Streptococcus was higher (P < 0.01) in the PC and SDPP groups than in the NC group. The PC group also had higher (P < 0.01) Faecalibacterium abundance than the NC and SDCP groups. Additionally, the SDCP group had higher (P < 0.05) serum urea nitrogen than those fed other diets, and lower (P < 0.10) short-chain fatty acids to branched-chain fatty acids ratio than the PC and SDPP groups. Overall, SDPP was a promising animal protein for piglets in increasing feed intake, modifying gut microbiota profile, reducing gut protein fermentation and alleviating diarrhea frequency, thus promoting growth performance, under the conditions with limited in-feed utilization of antibiotics and ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号