首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitrification by the Cryotop method is frequently used for bovine oocyte cryopreservation. Nevertheless, vitrified oocytes still have reduced developmental competency compared with fresh counterparts. The objective of this study was to compare the effect of vitrification either at the germinal vesicle (GV) stage or at the metaphase II (MII) stage on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Our results demonstrated that vitrification of oocytes at each meiotic stage significantly reduced blastocyst development after in vitro fertilization (IVF). However, vitrification at the GV stage resulted in higher blastocyst development than did vitrification at the MII stage. Irrespective of the meiotic stage, oocyte vitrification did not affect 5-methylcytosine (5mC) immunostaining intensity in oocyte DNA. However, at both stages, it caused a similar reduction of 5mC levels in DNA of subsequently developing blastocysts. Oocyte vitrification had no effect on the intensity of H3K9me3 and acH3K9 immunostaining in oocytes and subsequent blastocysts. The results suggest that irrespective of meiotic stage, oocyte vitrification alters global methylation in resultant embryos although such alteration in the oocytes was not detected. Oocyte vitrification might not influence histone acetylation and methylation in oocytes and resultant embryos. Vitrification at the immature stage was more advantageous for blastocyst development than at the mature stage.  相似文献   

2.
The survival rate of vitrified germinal vesicle (GV) stage porcine oocytes is very low, and it is not known if the vitrification damages the nucleus, cytoplasm or both. We have evaluated the eventual GV or cytoplasmic damage in fully grown (FG) and growing vitrified oocytes. Fifty-five percent of nonvitrified FG cumulus-denuded oocytes reached the metaphase II (MII) stage in culture. When growing oocytes from preantral (PA) and early antral (EA) follicles were matured in vitro, almost all oocytes were arrested at the GV stage (GV stage: PA 88.9 and EA 79.5%, respectively). When fresh GVs from FG, PA and EA oocytes were transferred into fresh enucleated FG oocytes and matured in vitro, some of them reached the MII stage (MII stage: FG/FG 57.5%, PA/FG 9.3% and EA/FG 35.3%, respectively). The maturation rate of vitrified FG oocytes was only 6.1% but increased dramatically when vitrified GVs from FG, PA and EA oocytes were transferred into fresh enucleated FG oocytes (MII stage: VitFG/FG 43.9%, VitPA/FG 7.1% and VitEA/FG 26.3%, respectively). These results were not significantly different from those for the nonvitrified groups (MII stage: FG/FG 57.5%, PA/FG 9.3% and EA/FG 35.3%, respectively). We activated the reconstructed oocytes that received fresh or vitrified GVs (FG/FG, EA/FG, VitFG/FG and VitEA/FG) and examined their embryonic development. Cleaved embryos (nonvitrified groups 13.0-61.8%, vitrified groups 33.3-40.0%) and blastocysts (nonvitrified groups 0.0-18.2%, vitrified groups 0.0-2.9%) were obtained after activation. These results demonstrate that vitrified porcine GVs maintain maturational and developmental competence and that vitrification predominantly damages the cytoplasm.  相似文献   

3.
Joining immature gamete cryopreservation and germinal vesicle transplantation (GVT) technique could greatly improve assisted reproductive technologies in animal breeding and human medicine. The present work was aimed to assess the most suitable cryopreservation protocol between slow freezing and vitrification for immature denuded bovine oocytes, able to preserve both nuclear and cytoplasmic competence after thawing. In addition, the outcome of germinal vesicle transfer procedure and gamete reconstruction was tested on the most effective cryopreservation system. Oocytes, isolated from slaughterhouse ovaries, were stored after cumulus cells removal either by slow freezing or by vitrification in open pulled straws. After thawing, oocytes were matured for 24 h in co-culture with an equal number of just isolated intact cumulus enclosed oocytes, and fixed in order to evaluate the stage of meiotic progression and cytoskeleton organization. Our results showed that after warming, vitrified oocytes reached metaphase II (MII) in a percentage significantly higher than oocytes cryopreserved by slow freezing (76.2% and 36.5% respectively, p < 0.05). Moreover, vitrification process preserved the organization of cytoskeleton elements in a higher proportion of oocytes than slow freezing procedure. Therefore vitrification has been identified as the elective method for denuded immature oocytes banking and it has been applied in the second part of the study. Our results showed that 38.3% of oocytes reconstructed from vitrified gametes reached the MII of meiotic division, with efficiency not different from oocytes reconstructed with fresh gametes. We conclude that vitrification represents a suitable method of GV stage denuded oocyte banking since both nuclear and cytoplasmic components derived from cryopreserved immature oocytes can be utilized for GVT.  相似文献   

4.
The immature cat oocyte contains a large-sized germinal vesicle (GV) with decondensed chromatin that is highly susceptible to cryo-damage. The aim of the study was to explore an alternative to conventional cryopreservation by examining the influence of GV chromatin compaction using resveratrol (Res) exposure (a histone deacetylase enhancer) on oocyte survival during vitrification. In Experiment 1, denuded oocytes were exposed to 0, 0.5, 1.0 or 1.5 mmol/l Res for 1.5 h and then evaluated for chromatin structure or cultured to assess oocyte meiotic and developmental competence in vitro . Exposure to 1.0 or 1.5 mmol/l Res induced complete GV chromatin deacetylation and the most significant compaction. Compared to other treatments, the 1.5 mmol/l Res concentration compromised the oocyte ability to achieve metaphase II (MII) or to form a blastocyst. In Experiment 2, denuded oocytes were exposed to Res as in Experiment 1 and cultured in vitro either directly (fresh) or after vitrification. Both oocyte types then were assessed for meiotic competence, fertilizability and ability to form embryos. Vitrification exerted an overall negative influence on oocyte meiotic and developmental competence. However, ability to reach MII, achieve early first cleavage, and develop to an advanced embryo stage (8–16 cells) was improved in vitrified oocytes previously exposed to 1.0 mmol/l Res compared to all counterpart treatments. In summary, results reveal that transient epigenetic modifications associated with GV chromatin compaction induced by Res is fully reversible and beneficial to oocyte survival during vitrification. This approach has allowed the production of the first cat embryos from vitrified immature oocytes.  相似文献   

5.
This study was undertaken to compare cryotolerance, in terms of viability and resumption of meiosis after warming and culture (24 and 48 h), of ex situ (isolated) and in situ (enclosed in the ovarian tissue) feline cumulus–oocyte complexes (COCs) vitrified with DAP 213 (2 m DMSO, 1 m acetamide, 3 m propylene glycol) in cryotubes or Cryotop method. Ovaries were harvested from 49 pubertal queens. Of each pair of ovaries, one was dissected to release COCs randomly divided into three groups: fresh COCs (control), ex situ COCs vitrified with DAP 213 and Cryotop. The cortex of the other ovary was sectioned into small fragments (approximately 1.5 mm3) and randomly assigned to be vitrified by DAP 213 or Cryotop. After warming, ex situ and in situ (retrieved form vitrified ovarian tissue) COCs were matured in vitro. Viability of oocytes was highly preserved after warming and culture in all treatments. Proportions of oocytes surrounded by complete layers of viable cumulus cells were remarkably decreased (p < 0.00001) in both vitrification procedures compared to fresh oocytes. Resumption of meiosis occurred in all treatments. After 24 h of culture, results were similar in ex situ and in situ vitrified oocytes regardless of the vitrification protocol used (range 29–40%), albeit lower (p < 0.05) than those of fresh oocytes (65.8%). After 48 h of culture, ex situ oocytes vitrified with Cryotop achieved the rates of meiosis resumption similar to fresh oocytes (53.8% vs 67.5%; p > 0.05) and ex situ and in situ oocytes vitrified with DAP 213 showed similar rates of resumption of meiosis. These findings demonstrated that DAP 213 and Cryotop preserve the viability of ex situ and in situ oocytes, but cumulus cells are highly susceptible to vitrification. However, the capability to resume meiosis evidences that feline immature oocytes vitrified as isolated or enclosed in the ovarian cortex have comparable cryotolerance.  相似文献   

6.
旨在研究玻璃化冷冻对牛GV期卵母细胞全基因组甲基化的影响。本研究收集新鲜、玻璃化冷冻的牛GV卵母细胞,采用单细胞全基因组甲基化测序(ScWGBS)技术对新鲜、玻璃化法冷冻牛GV卵母细胞的全基因组甲基化水平进行检测,旨在揭示两者DNA甲基化模式的差异。结果表明,玻璃化冷冻不会对牛GV卵母细胞的全基因甲基化水平造成显著影响。基于基因本体(GO)和信号通路(KEGG)对140个差异甲基化区域(DMRs)进行分析,发现DMRs主要参与细胞发育、细胞骨架组织等功能,主要富集在PI3K-Akt信号通路、GnRH信号通路等,并筛选出与卵母细胞成熟(TSC2)、细胞骨架(NUDC)、细胞活力(MAFK)等相关的基因。上述结果,可为提高GV卵母细胞玻璃化冷冻效率奠定信息基础和研究方向。  相似文献   

7.
Cryopreservation of ovarian cortex has important implications in the preservation of fertility and biodiversity in animal species. Slow freezing of cat ovarian tissue resulted in the preservation of follicular morphology and in the follicular development after xenografting. Vitrification has been recently applied to ovarian tissues of different species, but no information is available on the effect of this method on feline ovarian cortex. Moreover, meiotic competence of fully grown oocytes isolated from cryopreserved tissue has not been reported. The aim of this study was to evaluate the effect of vitrification of feline ovarian cortex on follicular morphology and oocyte integrity, as well as meiotic competence. A total of 352 fragments (1.5-2 mm(3) ) were obtained from ovarian cortical tissues: 176 were vitrified and 176 were used fresh as control. Histological evaluation of fresh and vitrified fragments showed intact follicles after cryopreservation procedures with no statistically significant destructive effect from primordial to antral follicles. After IVM, oocytes collected from vitrified ovarian fragment showed a higher proportion of gametes arrested at germinal vesicle (GV) stage compared to those isolated from fresh control tissue (33.8% vs 2.9%; p < 0.001). However, oocytes isolated from vitrified tissues were able to resume meiosis, albeit at lower rate than those collected from fresh tissues (39.8% vs 85.9%; p < 0.00001). Vitrification induced changes in the organization of cytoskeletal elements (actin microfilaments and microtubules) of oocytes, but significantly only for actin network (p < 0.001). Finally, chromatin configuration within the GV was not affected by the cryopreservation procedure. Our study demonstrated that vitrification preserves the integrity of ovarian follicles and that oocytes retrieved from cryopreserved tissue maintain the capability of resuming meiosis. To our knowledge, this has not previously been reported in the cat.  相似文献   

8.
Ultrastructural morphological injuries and maturation rates were investigated in equine oocytes exposed to vitrification solutions (VS) containing synthetic ice blockers (SIBs) during different exposure times. In experiment 1, compact cumulus-oocyte complexes (COCs; n = 30) were randomly allocated to treatments: (1) fresh fixed (control); (2) VS-1 (1.4 M dimethyl sulfoxide [DMSO] + 1.8 M ethylene glycol [EG] + 1% SIB) for 3 minutes of equilibrium time and VS-2 (2.8 M DMSO + 3.6 M EG + 0.6 M sucrose + 1% SIB) for 1 minute (Eq-long); and (3) VS-1 for 1.5 minutes and VS-2 for 30 seconds (Eq-short). In experiment 2, compact (n = 248) and expanded (n = 264) COCs were evenly distributed to the following treatments: (1) immediate maturation in vitro (control); (2) vitrification using the Eq-short protocol as in experiment 1; and (3) vitrification using a stock solution containing 2.8 M formamide, 2.8 M DMSO, 2.7 M EG, 7% polyvinylpyrrolidone, and 1% SIB (Eq-short-mod). More (P < .02) oocytes with normal ultrastructural morphology were seen in fresh control and Eq-short groups than in Eq-long group. Metaphase-II (MII) rates were higher (P < .05) for oocytes with expanded cumulus than compact cumulus in the control group, and higher (P < .05) for oocytes with expanded cumulus than compact cumulus in Eq-short and Eq-short-mod groups. No difference in MII rates was detected among groups within each type of COC. In conclusion, reduction of exposure time to VS better preserved oocyte ultrastructural features, and MII rates were higher for vitrified oocytes with expanded cumulus. This study advances our knowledge on potential alternatives for vitrification of immature equine oocytes.  相似文献   

9.
为比较猪卵母细胞在GV期与MⅡ期的冷冻保存效果,试验在这两个成熟阶段对其进行玻璃化冷冻,GV期卵母细胞解冻后培养至成熟,MⅡ期卵母细胞解冻后恢复2 h,然后采用免疫荧光标记、Western blotting和链霉蛋白酶溶解方法分别检测它们的皮质颗粒分布、CD9蛋白表达水平和透明带消化时间上的差异。结果表明,GV期卵母细胞在解冻后2 h的存活率显著低于MⅡ期卵母细胞(P<0.05),但极体排出率与对照卵母细胞无明显差异(P>0.05);在冷冻MⅡ期卵母细胞中,皮质颗粒的皮质区分布比例和CD9的蛋白表达水平显著下降(P<0.05),但冷冻GV期卵母细胞经体外成熟后则无明显变化(P>0.05);冷冻GV期与MⅡ期卵母细胞均不会影响透明带的消化时间(P>0.05)。由此可见,猪卵母细胞在GV期的冷冻存活率虽然较MⅡ期低,但其体外成熟后极体排出率、皮质颗粒分布和CD9蛋白表达水平均未受到冷冻的影响。  相似文献   

10.
This study was designed to compare the efficiency of porcine oocytes vitrified at the GV and MⅡ stages. The vitrified GV oocytes were matured in vitro and then evaluated their cortical granule distribution with immunofluorescence, CD9 protein level with Western blotting and zona pellucida dissolution time with pronse digestion method, as compared to vitrified MⅡ oocytes.The results showed that the survival percentages of oocytes vitrified at the GV stage were significantly lower than those vitrified at the MⅡ stage after 2 h of warming (P<0.05);However, there was no difference in maturation rate between vitrified and fresh oocytes (P>0.05). The oocytes vitrified at MⅡ stage resulted in significantly decreased normal cortical granule distribution and CD9 protein level (P<0.05), but no such results were found in vitrified GV oocytes after maturation (P>0.05). In addition, vitrification did not affect the dissolution time of zona pellucida in GV and MⅡ oocytes (P>0.05). The data demonstrated that despite of lower survival rate compared with MⅡ oocytes, vitrified porcine GV oocytes after maturation showed normal polar body extrusion, cortical granule distribution and CD9 protein level.  相似文献   

11.
This study was designed to compare the efficiency of the Cryotop method and that of two methods that employ a micro volume air cooling (MVAC) device by analyzing the survival and development of bovine oocytes and blastocysts vitrified using each method. In experiment I, in vitro-matured (IVM) oocytes were vitrified using an MVAC device without direct contact with liquid nitrogen (LN2; MVAC group) or directly plunged into LN2 (MVAC in LN2 group). A third group of IVM oocytes was vitrified using a Cryotop device (Cryotop group). After warming, vitrified oocytes were fertilized in vitro. There were no significant differences in cleavage and blastocyst formation rates among the three vitrified groups, with the rates ranging from 53.1% to 56.6% and 20.0% to 25.5%, respectively; however, the rates were significantly lower (P < 0.05) than those of the fresh control group (89.3% and 43.3%, respectively) and the solution control group (87.3% and 42.0%, respectively). In experiment II, in vitro-produced (IVP) expanded blastocysts were vitrified using the MVAC, MVAC in LN2 and Cryotop methods, warmed and cultured for survival analysis and then compared with the solution control group. The rate of development of vitrified-warmed expanded blastocysts to the hatched blastocyst stage after 24 h of culture was lower in the MVAC in LN2 group than in the solution control group; however, after 48–72 h of culture, the rates did not significantly differ between the groups. These results indicate that the MVAC method without direct LN2 contact is as effective as the standard Cryotop method for vitrification of bovine IVM oocytes and IVP expanded blastocysts.  相似文献   

12.
The aim of this study was to investigate the effect of Taxol and Cytochalasin B on the spindle, chromosome configuration and development to blastocyst stage after parthenogenesis activation of in vivo matured rabbit oocytes after vitrification. Oocytes were randomized into four groups: oocytes treated with Cytochalasin B or Taxol before vitrification, oocytes without treatment before vitrification and fresh oocytes. Oocytes were vitrified using Cryotop method, and meiotic spindle and chromosomal distribution were assessed with a confocal laser scanning microscopy. To determine oocyte competence, in vitro development of oocytes was assessed with parthenogenesis activation. There were no significant differences in the frequencies of normal spindle (33.0%, 31.0% and 32.6%, for non‐treated, Taxol‐treated and Cytochalasin B‐treated oocytes, respectively) and chromosome (48.3%, 46.6% and 34.8%, for non‐treated, Taxol‐treated oocytes and Cytochalasin B‐treated oocytes respectively) in vitrified groups, but significantly lower than those of fresh group (89.7% and 90.2%, for normal spindle and chromosome organization, respectively). No statistical differences were found in the cleavage and blastocyst development rates between non‐treated and Taxol‐treated oocytes (7.7% and 1.5% and 13.7% and 4.6%, for non‐treated and Taxol‐treated oocytes, respectively), although they were significantly lower than in the fresh group (42.3% and 32.1%, for cleavage and blastocyst development, respectively). Oocytes treated with Cytochalasin B failed to reach blastocyst stage. Normal spindle, chromosome configuration and blastocyst development of in vivo matured rabbit oocytes were damaged in vitrification, which was not improved by Taxol and Cytochalasin B pre‐treatment before vitrification. Moreover, a detrimental effect on blastocyst development of Cytochalasin B pre‐treatment before vitrification was observed.  相似文献   

13.
Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.  相似文献   

14.
This study was designed to evaluate effects of different combinations of cryoprotectants on the ability of vitrified immature buffalo oocytes to undergo in vitro maturation. Straw and open‐pulled straw (OPS) methods for vitrification of oocytes at the germinal vesicle stage also were compared. The immature oocytes were harvested from ovaries of slaughtered animals and were divided into three groups: (i) untreated (control); (ii) exposed to cryoprotectant agents (CPAs); or (iii) cryopreserved by straw and OPS vitrification methods. The vitrification solution (VS) consisted of 6 m ethylene glycol (EG) as the standard, control vitrification treatment, and this was compared with 3 m EG + 3 m dimethyl sulfoxide (DMSO), 3 m EG + 3 m glycerol, and 3 m DMSO + 3 m glycerol. Cryoprotectants were added in two steps, with the first step concentration half that of the second (and final) step concentration. After warming, oocyte samples were matured by standard methods and then fixed and stained for nuclear evaluation. Rates of MII oocytes exposed to CPAs without vitrification were lower (54.3 ± 1.9% in EG, 47.5 ± 3.4% in EG + DMSO, 36.8 ± 1.2% in EG + glycerol and 29.9 ± 1.0% in DMSO + glycerol; p < 0.05) than for the control group (79.8 ± 1.3%). For all treatments in each vitrification experiment, results were nearly identical for straws and OPS, so all results presented are the average of these two containers. The percentages of oocytes reaching telophase‐I or metaphase‐II stages were lower in oocytes cryopreserved using all treatments when compared with control. However, among the vitrified oocytes, the highest maturation rate was seen in oocytes vitrified in EG + DMSO (41.5 ± 0.6%). Oocytes cryopreserved in all groups with glycerol had an overall low maturation rate 19.0 ± 0.6% for EG + glycerol and 17.0 ± 1.1% for DMSO + glycerol. We conclude that the function of oocytes was severely affected by both vitrification and exposure to cryoprotectants without vitrification; the best combination of cryoprotectants was EG + DMSO for vitrification of immature buffalo oocytes using either straw or OPS methods.  相似文献   

15.
Nowadays, the efficiency of buffalo oocytes cryopreservation is still low. The purpose of this study was to evaluate effects of two combinations of cryoprotectant agents (CPAs) and two vitrification devices for vitrification of swamp buffalo oocytes on their survival after vitrification warming, and subsequent developmental ability after in vitro fertilization. In vitro matured (IVM) oocytes were vitrified by either Cryotop (CT) or solid surface vitrification (SSV) interacting with vitrification solution A (VA) or B (VB). In the VA or VB solution exposed test, the oocytes showed similar survival rates, but decreased blastocyst rates after in vitro fertilization compared with that of untreated oocytes. After vitrification, the CT method combined with VA solution yielded a higher survival rate (91.3 ± 5.84%) of vitrified oocytes than that combined with VB solution (69.8 ± 4.19%–75.8 ± 4.55%); however, all the vitrification treatments showed lower blastocyst rates (1.1 ± 0.07%–5.2 ± 0.24%) compared with that of untreated oocytes (18.0 ± 1.09%). Our results indicated that combined vitrification treatments in this study did not improve the decreased ability of vitrified oocytes developing to the blastocyst stage.  相似文献   

16.
试验旨在探究玻璃化冷冻对驴卵母细胞发育的影响,寻求驴卵母细胞冷冻的最佳条件。通过对不同发育时期的驴卵母细胞进行玻璃化冷冻,冷冻复苏后分别进行成熟培养和孤雌激活,并对GV期未冷冻组(对照组)、GV期冷冻组、IVM-M Ⅱ冷冻组卵母细胞微丝和线粒体超微结构进行免疫荧光标记,统计冷冻复苏后卵母细胞形态正常率、成熟率、孤雌激活卵裂率、超微结构正常率。结果表明,GV期冷冻组卵母细胞的形态正常率与GV期未冷冻组(对照组)间无显著差异(P>0.05),成熟率和卵裂率均显著低于对照组(P<0.05);IVM-M Ⅱ冷冻组的卵裂率显著低于对照组(P<0.05),且卵裂后细胞发育受到阻滞。冷冻组微丝在皮质区分布明显减少的卵母细胞数目增多,冷冻组卵母细胞的线粒体数量明显低于对照组,由此可以说明冷冻对卵母细胞超微结构有损伤,从而导致复苏后成熟率下降,影响卵母细胞的受精和体外发育,且GV期冷冻组较IVM-M Ⅱ冷冻组在微丝与线粒体结构上有较小损伤,发育状态较好。  相似文献   

17.
The aim of our investigation was to compare the ultrastructure of lipid droplets in porcine pronuclear oocytes obtained after in vitro fertilization (IVF) or parthenogenetic activation (PGA) of Metaphase II (MII) oocytes. The ultrastructure of lipids in the IVF or PGA pronuclear oocytes after vitrification was also studied. There are two kinds of lipid droplets in porcine GV oocytes: 'dark' and homogenous vesicles next to 'grey' vesicles with electron-lucent streaks. After IVF or PGA and following 16-h culture, only the presence of 'grey' vesicles was detected in IVF and PGA oocytes. Ultra-structure of lipid vesicles of PGA and IVF oocytes was similar. The PGA oocytes can be as model of the two pronuclear stage IVF oocytes.  相似文献   

18.
玻璃化冷冻作为一种操作简单、成功率高的细胞保存方式具有诸多优点,广泛应用于农业、医学、生物等领域。但相较于新鲜卵母细胞,玻璃化冷冻后的卵母细胞仍存在许多问题,如玻璃化冷冻后的卵母细胞妊娠率和产活仔率低于新鲜的卵母细胞、基因表达异常等。表观遗传学是研究基因在核苷酸序列不发生改变的情况下基因表达的可遗传变化的一门学科。表观遗传修饰在不改变DNA序列的情况下使基因和环境之间产生相互作用。在体外胚胎生产过程中,外界环境因素会对表观遗传修饰造成影响。作者从表观遗传学方面综述了玻璃化冷冻对哺乳动物MⅡ期卵母细胞DNA和全基因组甲基化、组蛋白甲基化和乙酰化、磷酸化及泛素化、基因印迹、microRNA的影响,以及玻璃化冷冻MⅡ卵母细胞后表观遗传修饰的改变对转录过程中基因的表达影响,为揭示并调控玻璃化冷冻卵母细胞后表观遗传修饰事件、进一步提高玻璃化冷冻后卵母细胞的质量提供参考。  相似文献   

19.
20.
Although cryopreservation of mammalian oocytes is an important technology, it is well known that unfertilized oocytes, especially in pigs, are highly sensitive to low temperature and that cryopreserved oocytes show low fertility and developmental ability. The aim of the present study was to clarify why porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage showed low fertility and developmental ability after vitrification. In vitro matured cumulus oocyte complexes (COCs) were vitrified with Cryotop and then evaluated for fertility through in vitro fertilization (IVF). Although sperm‐penetrated oocytes were observed to some extent (30–40%), the rate of pronuclear formation was low (9%) and none of them progressed to the two‐cell stage. The results suggest that activation ability of cryopreserved oocytes was decreased by vitrification. We examined the localization and expression level of the type 1 inositol 1,4,5 trisphosphate receptor (IP3R1), the channel responsible for Ca2+ release during IVF in porcine oocytes. Localization of IP3R1 close to the plasma membrane and total expression level of IP3R1 protein were both decreased by vitrification. In conclusion, our present study indicates that vitrified‐warmed porcine COCs showed a high survival rate but low fertility after IVF. This low fertility seems to be due to the decrease in IP3R1 by the vitrification procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号