首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of Hereford, Angus, or both as well as varying percentages of Simmental, Charolais, Limousin, Gelbvieh, Red Angus, and MARC III composite. Because the steers were slaughtered on various dates each year and the animals thus varied in days on feed, BW and feed data were adjusted to a 140-d feeding period basis. Adjustment of measures of feed efficiency [G:F or residual feed intake (RFI), intake adjusted for metabolic body size, and BW gain] for body fatness recorded at slaughter had little effect on the results of analyses. Average daily gain was less heritable (0.26) than was midtest BW (MBW; 0.35). Measures of feed intake had greater estimates of heritability, with 140-d DMI at 0.40 and RFI at 0.52; the heritability estimate for G:F was 0.27. Flight speed (FS), as an indicator of temperament, had an estimated heritability of 0.34 and a repeatability of 0.63. As expected, a strong genetic (0.86) correlation was estimated between ADG and MBW; genetic correlations were less strong between DMI and ADG or MBW (0.56 and 0.71). Residual feed intake and DMI had a genetic correlation of 0.66. Indexes for phenotypic RFI and genotypically restricted RFI (no correlation with BW gain) were compared with simple economic indexes incorporating feed intake and growth to elucidate expected selection responses under different criteria. In general, few breed differences were detected across the various measurements. Heterosis contributed to greater DMI, RFI, and MBW, but it did not significantly affect ADG, G:F, or FS. Balancing output (growth) with input costs (feed) is needed in practicing selection, and FS would not be recommended as an indicator trait for selection to change feed efficiency. An index including BW gain and RFI produced the best economic outcome.  相似文献   

2.
Twenty-four beef steers (predominantly Angus x Hereford, 14 to 18 mo of age, 403 +/- 3 kg of BW), were housed and fed in individual pens for about 122 d. Twelve steers came from a herd that had been selected for growth (high growth; HG) and the other 12 from a herd with no selection program (low growth; LG). Another 6 steers (3 from each group) were slaughtered at the beginning to obtain the initial composition. All steers were fed the same corn-based diet (3.06 Mcal of ME/kg of DM, 13.6% CP) on an ad libitum basis. Two weeks before slaughter, total urine was collected for 5 d for estimation of 3-methylhistidine excretion and myofibrillar protein breakdown rates. Compared with LG steers, HG steers had less initial BW but greater final BW, DMI (7.52 vs. 6.37 kg/d), ADG (1.33 vs. 0.853 kg/d), G:F (0.176 vs. 0.133 kg/kg), ME intake (0.233 vs. 0.201 Mcal x kg of BW(0.75) x d(-1)), and retained energy (RE; 0.0711 vs. 0.0558 Mcal x kg of BW(0.75) x d(-1)); gained more fat (676 vs. 475 g/d); and tended to gain more whole body protein (100 vs. 72 g/d), with no difference in residual feed intake (RFI). Estimated net energetic efficiency of gain (k(g)) and ME for maintenance (ME(m)) did not differ between the 2 groups, averaging 0.62 and 0.114, respectively. The HG steers had greater HCW (350 vs. 329 kg), backfat (16.1 vs. 11.6 mm), and yield grades (3.53 vs. 2.80), with a similar dressing percent, KPH fat, LM area, and marbling score. Skeletal muscle protein gain (70.2 vs. 57.6 g/d) and fractional protein accretion rate (0.242 vs. 0.197%/d) tended to be greater in HG than in LG steers. Steers were classified into low (-0.367 kg/d) and high (0.380 kg/d) RFI classes. Compared with the high RFI steers, low RFI steers consumed less DM (6.61 vs. 7.52 kg/d) and ME (0.206 vs. 0.234 Mcal x kg of BW(0.75) x d(-1)) and tended to gain less fat (494 vs. 719 g/d), but were similar for initial and final BW, ADG, G:F, protein gain, HCW, dressing percent, backfat, KPH fat, LM area, marbling score, and yield grade, as well as for all observations related to myofibrillar protein metabolism. Residual feed intake may be positively [corrected] correlated with ME for maintenance. The maintenance energy requirement increased by 0.0166 Mcal x kg(-0.75) x d(-1) for each percentage increase in fractional protein degradation rate, confirming the importance of this process in the energy economy of the animal.  相似文献   

3.
The objectives were to 1) evaluate genetic relationships of sex-specific indicators of carcass merit obtained by using ultrasound with carcass traits of steers; 2) estimate genetic parameters needed to implement combined analyses of carcass and indicator traits to produce unified national cattle evaluations for LM area, subcutaneous fat depth (SQF), and marbling (MRB), with the ultimate goal of publishing only EPD for the carcass traits; and 3) compare resulting evaluations with previous ones. Four data sets were extracted from the records of the American Angus Association from 33,857 bulls, 33,737 heifers, and 1,805 steers that had measures of intramuscular fat content (IMF), LM area (uLMA), and SQF derived from interpretation of ultrasonic imagery, and BW recorded at the time of scanning. Also used were 38,296 records from steers with MRB, fat depth at the 12th to 13th rib interface (FD), carcass weight, and carcass LM area (cLMA) recorded on slaughter. (Co)variance components were estimated with ASREML by using the same models as used for national cattle evaluations by the American Angus Association. Heritability estimates for carcass measures were 0.45 +/- 0.03, 0.34 +/- 0.02, 0.40 +/- 0.02, and 0.33 +/- 0.02 for MRB, FD, carcass weight, and cLMA, respectively. Genetic correlations of carcass measures from steers with ultrasonic measures from bulls and heifers indicated sex-specific relationships for IMF (0.66 +/- 0.05 vs. 0.52 +/- 0.06) and uLMA (0.63 +/- 0.06 vs. 0.78 +/- 0.05), but not for BW at scanning (0.46 +/- 0.07 vs. 0.40 +/- 0.07) or SQF (0.53 +/- 0.06 vs. 0.55 +/- 0.06). For each trait, estimates of genetic correlations between bulls and heifers measured by using ultrasound were greater than 0.8. Prototype national cattle evaluations were conducted by using the estimated genetic parameters, resulting in some reranking of sires relative to previous analyses. Rank correlations of high-impact sires were 0.91 and 0.84 for the joint analysis of MRB and IMF with previous separate analyses of MRB and IMF, respectively. Corresponding results for FD and SQF were 0.90 and 0.90, and for cLMA and uLMA were 0.79 and 0.89. The unified national cattle evaluation for carcass traits using measurements from slaughtered animals and ultrasonic imagery of seed stock in a combined analysis appropriately weights information from these sources and provides breeders estimates of genetic merit consistent with traits in their breeding objectives on which to base selection decisions.  相似文献   

4.
Three experiments were conducted to study the effects of lasalocid level on performance, intake, digestibility, ruminal fermentation and fluid flow of beef cattle grazing dormant, tallgrass prairie. In Exp. 1, 120 pregnant, mature beef cows of primarily Hereford breeding (avg wt = 471 kg) were randomly assigned to received 0, 100, 200 or 300 mg lasalocid X head-1 X d-1 in 1.82 kg supplement. Weight changes at 30, 60 or 90 d, condition score change and calf birth weight were not affected (P greater than .10) by lasalocid level. In Exp. 2, estimates of intake and digestibility were obtained with 40 pregnant, mature Hereford cows (avg wt = 474 kg) and 12 esophageal-cannulated, Hereford X Angus steers (avg wt = 225 kg), using Yb and indigestible acid detergent fiber as markers for fecal output and digestibility, respectively. Levels of lasalocid provided to cows and steers were similar, on a body weight (BW) basis, to those in Exp. 1 and corresponded to approximately 0, .22, .44 or .66 mg lasalocid/kg BW. Total diet and forage organic matter digestibility for beef cows decreased (P less than .01) at the .22 mg/kg BW level, but increased at the .44 and .66 mg/kg BW levels. Organic matter intake was not influenced (P greater than .10) by lasalocid addition. In Exp. 3, 16 ruminal-cannulated, Hereford X Angus steers (avg wt = 227 kg) were given the same lasalocid dosages per kg BW as in Exp. 2, and were used to study the effects of lasalocid on ruminal fermentation and fluid flow characteristics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

6.
In order to estimate genetic parameters, abattoir carcass data on 1,713 Angus and 1,007 Hereford steers and heifers were combined with yearling live-animal ultrasound measurements on 8,196 Angus and 3,405 Hereford individuals from seedstock herds. Abattoir measures included carcass weight (CWT), percentage of retail beefyield (RBY), near-infrared measured intramuscular fat percentage (CIMF), preslaughter scanned eye muscle area (CEMA), and subcutaneous fat depth at the 12th rib (CRIB) and at the P8 site (CP8). Ultrasound scans on yearling animals included 12th-rib fat depth (SRIB), rump fat depth at the P8 site (SP8), eye muscle area (SEMA), and percentage of intramuscular fat (SIMF). Records on CWT were adjusted to 650-d slaughter age, and the remaining abattoir traits were adjusted to 300-kg CWT. Scan data were analyzed treating records on males and females as different traits. Multivariate analyses were performed on a variety of trait combinations using animal model and REML algorithm. Heritability (h2) estimates for CWT, RBY, CIMF, CP8, CRIB, and CEMA were .31, .68, .43, .44, .28, and .26, respectively, for Angus and .54, .36, .36, .08, .27, .38, respectively, for Hereford. Pooled across sexes, h2 estimates for SIMF, SP8, SRIB, and SEMA were .33, .55, .51, and .42, respectively, for Angus and .20, .31, .18, and .38, respectively, for Hereford. Genetic correlations (r(g)) between the same pair of carcass traits measured at yearling through scanning and directly at the abattoir were moderate to strongly positive, suggesting that selection using yearling ultrasound measurements of seedstock cattle should result in predictable genetic improvement for abattoir carcass characteristics. Estimates of r(g) between the scanned fat measurements and RBY were negative, ranging from -.85 for Angus heifers to -.05 for Hereford heifers. Also, the estimates of r(g) between SEMA and the fat records measured at the abattoir were negative and ranged from -.94 in Hereford heifers to -.02 in Angus heifers.  相似文献   

7.
The objectives of this study were to determine the fraction of additive genetic variance explained by the SNP from the Illumina Bovine3K chip; to compare the ranking of animals evaluated with genomic-polygenic, genomic, and polygenic models; and to assess trends in predicted values from these 3 models for residual feed intake (RFI), daily feed intake (DFI), feed conversion ratio (FCR), and postweaning BW gain (PWG) in a multibreed Angus-Brahman cattle population under subtropical conditions. Data consisted of phenotypes and genotypes from 620 bulls, steers, and heifers ranging from 100% Angus to 100% Brahman. Phenotypes were collected in a GrowSafe automated feeding facility (GrowSafe Systems, Ltd., Airdrie, Alberta, Canada) from 2006 to 2010. Variance components were estimated using single-trait genomic-polygenic mixed models with option VCE (Markov chain Monte Carlo) of the program GS3. Fixed effects were contemporary group (year-pen), age of dam, sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf. Random effects were additive SNP, animal polygenic, and residual effects. Genomic predictions were computed using a model without polygenic effects and polygenic predictions with a model that excluded additive SNP effects. Heritabilities were 0.20 for RFI, 0.31 for DFI, 0.21 for FCR, and 0.36 for PWG. The fraction of the additive genetic variance explained by SNP in the Illumina 3K chip was 15% for RFI, 11% for DFI, 25% for FCR, and 15% for PWG. These fractions will likely differ in other multibreed populations. Rank correlations between genomic-polygenic and polygenic predictions were high (0.95 to 0.99; P < 0.0001), whereas those between genomic-polygenic and genomic predictions were low (0.65 to 0.74; P < 0.0001). Genomic-polygenic, genomic, and polygenic predictions for all traits tended to decrease as Brahman fraction increased, indicating that calves with greater Brahman fraction were more efficient but grew more slowly than calves with greater Angus fraction. Predicted SNP values were small for all traits, and those above and below 0.2 SNP SD were in multiple chromosomes, supporting the contention that quantitative traits are determined by large numbers of alleles with small effects located throughout the genome.  相似文献   

8.
Ninety-three crossbred steer calves (BW+/-SD=385+/-50 kg) were used (n=48 steers in yr 1, n=45 steers in yr 2) to examine the relationship among carcass traits, lean, bone, and fat proportions, visceral tissue weights, and pancreatic digestive enzyme activity with DMI, ADG, G:F, and residual feed intake. Calves were progeny from crossbred dams predominantly of Angus and Simmental breeding and were sired by Angus, Simmental, crossbred (predominantly of Angus and Simmental breeding), Charolais, or Piedmontese bulls. Steers were fed a high-moisture corn-based diet for an average of 112 d. Partial correlation analysis accounting for year, pen within year, week of slaughter within year, and sire breed was conducted. Gain:feed was negatively correlated (P 0.10) between performance measures and the pancreatic proportional content of alpha-amylase and trypsin activity (units/kg of BW). These data indicate that carcass fatness traits and changes in the proportional weight of total viscera may be negatively associated with G:F and that visceral fat weight proportion and trim and kidney fat weight proportion may be important factors influencing this relationship.  相似文献   

9.
Ten Angus and 10 Brahman x Angus F1 steers were used in a 184-d trial to compare feedlot performance during cold weather (-9 to 26 degrees C). Both groups of steers were exposed to the same environment for the same amount of time. All steers were fed for the same number of days regardless of frame score to avoid frame score x environment interactions. Brahman x Angus steers were 30.7 kg heavier (P less than .05) than Angus steers at the start of the trial. Differences in age (Brahman x Angus 40 d younger) for the two breed groups did not affect final live weight or carcass weight. Brahman x Angus steers consumed .2% less feed (P less than .05) as a percentage of BW than Angus steers; however, there was no difference in overall feed efficiency. Angus steers had a higher yield grade, more fat at the 12th rib (P less than .05), and graded 90% Choice; only 10% of the Brahman x Angus were graded Choice. Brahman x Angus steers were taller at the hip (P less than .05) and longer from first rib to aitch bone (P less than .05) and from thoracic vertebrae (T12/T13) to point of hock (P less than .05). Hide thickness determined at the neck, belly, and rump was found to be similar (7.7 mm) between the two groups. Sample hair weight and diameter did not differ between groups. Fiber, fat, protein, and DM digestibility coefficients were similar between groups but Brahman x Angus feces had a higher DM content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Genomic selection using high‐density single nucleotide polymorphism (SNP) genotype data may accelerate genetic improvements in livestock animals. In this study, we attempted to estimate the variance components of six carcass traits in fattened Japanese Black steers using SNP genotype data. Six hundred and seventy‐three steers were genotyped using an Illumina Bovine SNP50 BeadChip and phenotyped for cold carcass weight, ribeye area, rib thickness, subcutaneous fat thickness, estimated yield percent and marbling score. Additive polygenic variance and the variance attributable to a set of SNPs that had statistically significant effects on the trait were estimated via Gibbs sampling with two models: (i) a model with the chosen SNPs and the additive polygenic effects; and (ii) a model with the polygenic effects alone. The proportion of the estimated variance attributable to the SNPs became higher as the number of SNP effects that fit increased. High correlations between breeding values estimated with the model containing the polygenic effect alone and those estimated by chosen SNPs were obtained. No fraction of the total genetic variance was explained by SNPs associated with the trait at P ≥ 0.1. Our results suggest that for the carcass traits of Japanese Black cattle, a maximum of half of the total additive genetic variance may be explained by SNPs between 100 several tens to several 100s.  相似文献   

11.
This study determined the influence of the estrogenic ear implant Synovex-S on feedlot performance, tissue deposition, and thyroid status of growing-finishing beef steers implanted either once or reimplanted. The pattern of implant absorption was also determined. Two 112-d feeding trials were used with 48 Hereford steers per trial. Each trial was a randomized block design with eight groups (lots) of six steers each assigned to four treatments (two lots/treatment). Treatments were 1) no implant or control, 2) implanted on d 0 and reimplanted at 60 d on trial, 3) implanted at 30 d on trial, and 4) implanted on d 0 only. These implant treatments resulted in withdrawal periods before slaughter of approximately 60, 90 and 120 d for Treatments 2, 3, and 4, respectively. All steers were given ad libitum access to water and a 60% concentrate diet. Group intakes were determined daily, BW weekly, estimated body composition every 28 d, plasma thyroid hormone concentrations at 112 d and at slaughter, and carcass measurements and liver tissue deiodinase at slaughter. Approximately 25% of the original implant dose remained in the ear 60 d after implanting and this residual amount was absorbed linearly at the rate of approximately .15% of the original dose per day. Implant treatments increased (P less than .05) DMI, BW gain, feed conversion, and empty body gains for water and protein. Carcass measurements suggested a nonsignificant trend (P greater than .10) for leaner carcasses for implanted steers. An immediate shift toward greater protein and less fat deposition occurred within 28 d after initial implanting (Treatment 3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Because of the moderate heritability and the expense associated with collecting feed intake data, effective selection for residual feed intake would be enhanced if marker-assisted evaluation were used for accurate estimation of genetic merit. In this study, a suite of genetic markers predictive of residual feed intake, DMI, and ADG were preselected using single-marker regression analysis, and the top 100 SNP were analyzed further to provide prediction equations for the traits. The data used consisted of 728 spring-born beef steers, offspring of a cross between a composite dam line and Angus, Charolais, or University of Alberta hybrid bulls. Feed intake data were collected over a 5-yr period, with 2 groups (fall-winter and winter-spring) tested every year. Training and validation data sets were obtained by splitting the data into 2 distinct sets, by randomly splitting the data into training and testing sets based on sire family (split 1) in 5 replicates or by retaining all animals with no known pedigree relationships as the validation set (split 2). A total of 37,959 SNP were analyzed by single-marker regression, of which only the top 100 that corresponded to a P-value <0.002 were retained. The 100 SNP were then analyzed using random regression BLUP, and only SNP that were jointly significant (P < 0.05) were included in the final marker panels. The marker effects from the selected panels were used to derive the molecular breeding values, which were calculated as a weighted sum of the number of copies of the more frequent allele at each SNP locus, with the weights being the allele substitution effects. The correlation between molecular breeding value and phenotype represented the accuracy of prediction. For all traits evaluated, accuracy across breeds was low, ranging between 0.007 and 0.414. Accuracy was least in data split 2, where the validation individuals had no pedigree relationship with animals in the training data. Given the low predictive ability observed, a large number of individuals may be needed for prediction when using such an admixed population. Further, these results suggest that breed composition of the target population in which the marker panels are likely to be used should be an important consideration when developing prediction equations across breeds, especially where an admixed population is used as the training data set.  相似文献   

13.
Data from 1,909 purebred, F1, backcross and F2 and F3 inter se combinations of Angus and Hereford were used to estimate average individual, maternal and grandmaternal genetic effects, individual and maternal heterosis, dominance and epistatic genetic effects. Models for evaluating heterosis and epistatic or recombination effects were discussed. Average individual effects indicate that Angus, compared with Hereford, had calves that were born earlier, had lighter birth weights, lower pre- and postweaning gains and lower pregnancy rates. Angus also produced lighter weight carcasses with more fat cover and marbling. Maternal effects of Angus were in the direction of reduced birth weight, greater calving ease, higher preweaning but lower postweaning growth rate and increased fatness when contrasted with Hereford. There was a tendency for opposite direction of maternal and grandmaternal effects for traits influenced by preweaning maternal environment. When additive X additive effects were ignored, total heterosis was significant for earlier day born, heavier birth weight, preweaning and postweaning gain, and heavier and fatter carcasses. Heterosis retained in F3 inter se vs F1 generation crosses indicated that net epistatic effects were relatively negligible for date of calving, birth weight, weaning gain and fat cover. There was a greater reduction of heterosis effects than expected from dominance alone for survival, pregnancy and marbling score. Loss of heterosis in F3 was less than expected for postweaning gain, carcass weight and rib eye area. Except for survival, pregnancy and marbling, these deviations from dominance expectations, or lack of them, are favorable for F3 composite populations.  相似文献   

14.
The objective of this study was to quantify the effect of inbreeding on carcass quality, growth rate, live conformation measures, and calving performance in purebred populations of Charolais, Limousin, Simmental, Hereford, and Angus beef cattle using data from Irish commercial and pedigree herds. Variables analyzed are reflective of commercial farming practices. Inbreeding was included in a linear mixed model as either a class variable or a linear continuous variable. Nonlinear effects were nonsignificant across all traits. Inbred animals had decreased carcass weight and less carcass fat. The effects of inbreeding were more pronounced in the British beef breeds. Effects for carcass weight ranged from -0.87 kg (Charolais) to -1.90 kg (Hereford) per 1% increase in inbreeding. Inbred Charolais and Hereford animals were younger at slaughter by 3 and 5 d, respectively, per percentage of increase in inbreeding, whereas the effect of inbreeding on age at slaughter differed significantly with animal sex in the Limousin and Angus breeds. Inbred Limousin and Angus heifers were younger at slaughter by 5 and 7 d, respectively, per percentage of increase in inbreeding. Continental animals were more affected by inbreeding for live muscling and skeletal conformational measurements than the British breeds; inbred animals were smaller and narrower with poorer developed muscle. Calf inbreeding significantly affected perinatal mortality in Charolais, Simmental, and Hereford animals. The effects were dependent upon dam parity and calf sex; however, where significant, the association was always unfavorable. Dam inbreeding significantly affected perinatal mortality in Limousin and Hereford animals. Effects differed by parity in Limousins. Inbred first-parity Angus dams had a greater incidence of dystocia. Although the effects of inbreeding were some-times significant, they were small and are unlikely to make a large financial effect on commercial beef production in Ireland.  相似文献   

15.
The composition of carcass and noncarcass tissue growth was quantified by serial slaughter of 26 Angus x Hereford crossbred steers (initial age and weight 289 +/- 4 d and 245 +/- 4 kg) during continuous growth (CON) or compensatory growth (CG) after a period of growth restriction (.4 kg/d) from 245 to 325 kg BW. All steers were fed a 70% concentrate diet at ad libitum or restricted levels. Homogenized samples of 9-10-11th rib and noncarcass tissues were analyzed for nitrogen, fat, ash, and moisture. Growth rate from 325 to 500 kg BW was 1.54 and 1.16 kg/d for CG and CON steers. The weight of gut fill in CG steers was 10.8 kg less (P less than .05) before realimentation and 8.8 kg more (P less than .10) at 500 kg BW than in CON steers. The allometric accretive rates for carcass chemical components relative to the empty body were not affected by treatment. However, the accretive rates for CG steers were greater (P less than .01) for noncarcass protein (.821 vs .265), noncarcass water (.861 vs .507), and empty-body protein (.835 vs. .601) than for CON steers. Final empty-body fat was lower (P less than .001; 24.2 vs 32.4%) and empty-body protein higher (P less than .001; 16.6 vs 14.8%) in CG steers than in CON steers. Consequently, net energy requirements for growth (NEg) were approximately 18% lower for CG steers. We conclude that reduced NEg requirements and changes in gut fill accounted for most of the compensatory growth response exhibited in these steers.  相似文献   

16.
Two experiments were conducted to compare ruminal, physiological, and performance responses of forage-fed cattle consuming grain-based supplements without (NF) or with the inclusion (10%; DM basis) of a rumen-protected PUFA (PF) or SFA source (SF). Supplements were offered and consumed at 0.6% of BW/animal daily (DM basis). In Exp. 1, DMI and ruminal in situ forage degradability were evaluated in 3 Angus × Hereford cows fitted with ruminal cannulas and allocated to a 3 × 3 Latin square design. Within each experimental period, hay was offered in amounts to ensure ad libitum access from d 1 to 13, DMI was recorded from d 8 to 13, and cows were limited to receive 90% of their average hay DMI (d 1 to 13) from d 14 to 21. On d 16, polyester bags containing 4 g of ground hay (DM basis) were incubated within the rumen of each cow for 0, 4, 8, 12, 24, 36, 48, 72, and 96 h. Hay and total DMI were reduced (P < 0.05) in cows receiving PF compared with cows receiving SF and NF. No treatment effects were detected (P > 0.48) for ruminal disappearance rate and effective ruminal degradability of hay DM and NDF. In Exp. 2, preconditioning DMI, ADG, carcass traits, and plasma concentrations of cortisol, fatty acids, acute-phase proteins, and proinflammatory cytokines were assessed in 72 Angus × Hereford steers receiving supplement treatments during a 28-d preconditioning period. All steers were transported to a commercial growing lot after preconditioning (d 1) and were later moved to an adjacent commercial finishing yard (d 144), where they remained until slaughter. No treatment effects were detected (P ≥ 0.52) for preconditioning ADG and G:F, but DMI tended (P = 0.09) to be reduced in steers receiving PF compared with those receiving NF and SF. Plasma PUFA concentrations were greater in steers receiving PF compared with those receiving NF and SF (P = 0.01). After transportation, concentration of tumor necrosis factor-α increased for steers receiving NF, did not change for steers receiving SF, but decreased for steers receiving PF (treatment × day interaction, P < 0.01). Steers fed PF had greater (P = 0.02) ADG compared with those fed NF during the growing phase. Carcass yield grade and marbling were greater (P < 0.05) for steers fed PF compared with those fed NF. In conclusion, PUFA supplementation did not affect ruminal forage degradability but did impair DMI in beef cows. Further, PUFA supplementation to steers during preconditioning reduced plasma concentrations of tumor necrosis factor-α after transportation, and benefited growing lot ADG and carcass marbling.  相似文献   

17.
A study was conducted to compare Brangus, Beefmaster, Gelbray, and Simbrah breed influences for economically important traits. Brangus (9), Beefmaster (12), Gelbray (10), and Simbrah (7) sires were used in purebred and crossbred (Brahman x Hereford F1 cows) matings to generate calves (326) in eight breed groups. Beefmaster cows were of similar size (448 kg), Brangus and Gelbray cows were 11% heavier (501 and 503 kg), and Simbrah cows were 21% heavier (548 kg) compared to Brahman x Hereford F1 cows (452 kg). Calves sired by Brangus and Beefmaster bulls had lower birth weights (35 vs 38 kg; P < 0.05), preweaning growth rates (0.87 vs 0.91 kg x d(-1); P < 0.01), and weaning weights (206 vs 219 kg; P < 0.01) than Gelbray- and Simbrah-sired calves. Birth weights, preweaning ADG, and weaning weight and hip heights were similar between Brangus- and Beefmaster-sired calves. Simbrah-sired calves had greater preweaning growth rates (0.94 vs 0.88 kg x d(-1); P < 0.05), weaning weights (227 vs 211 kg; P < 0.01), and adjusted 205-d hip heights (126 vs 122 cm; P < 0.05) than Gelbray-sired calves. Straightbred Angus steers were introduced in the postweaning portion of the study. Steer calves were placed on feed at an average age of 14.5 mo. Steers were removed from the feedlot upon attaining a targeted 10 mm of backfat. Feedlot ADG did not differ among sire breeds. Brahman-derivative sired steers required an additional 54 d on feed (P < 0.01) and were 86 kg heavier (P < 0.01) at harvest than Angus steers. Continental-Brahman steers spent an additional 25 d on feed (P < 0.05) and were 35 kg heavier (P < 0.01) at harvest than British-Brahman steers. Simbrah-sired steers were 52 kg heavier (P < 0.01) at harvest than Gelbray-sired steers when fed for a similar number of days (211 vs 203 d). However, straightbred Simbrah steers required an additional 12 d on feed (P < 0.01) and weighed 47 kg more (P < 0.01) than Simbrah-sired crossbred steers. The economic value of the heavier calf weaning weights may be offset by the attendant larger cow size of the Continental-Brahman compared to the British-Brahman breeds. Similarly, the heavier weights of Continental-Brahman compared to British-Brahman steers, when harvested at a prescribed level of fatness may be viewed as a benefit, but the increased number of requisite days in the feedlot is a disadvantage.  相似文献   

18.
The objective of this study was to determine the relationships of uncoupling protein 2 and 3 expression, SNP of mitochondrial DNA, and residual feed intake (RFI) in Angus steers selected to have high or low RFI. Individual feed intake was measured via the GrowSafe feed intake system over a 3-mo period and used to calculate RFI, a measure of efficiency. Based on these calculations, 6 low- (average RFI = -1.57 kg) and 6 high- (average RFI = 1.66 kg) RFI steers were selected for further study. Blood was collected via jugular venipuncture 1 wk before slaughter for the isolation of mitochondrial DNA. The steers were then killed to collect LM for the measurement of uncoupling protein 2 and 3 mRNA and protein expression. Protein and mRNA expression of uncoupling protein 2 and 3 were determined by Western blotting and quantitative PCR, respectively. To determine SNP of mitochondrial DNA, total DNA was isolated from blood via standard phenol/chloroform extraction; fragments were amplified with PCR and sequenced with an automated nucleotide sequencer. Average daily gain and carcass composition were not different (P > 0.13) between the high- and low-RFI steers; however, ADFI by the high-RFI animals was 3.77 kg greater (P < 0.001) than the low-RFI animals. No difference (P > 0.55) was observed between the high- and low-RFI animals in their expression of uncoupling protein 2 or 3 mRNA or protein. On average 9.8 and 8.9 polymorphisms were found per mitochondrial genome for the low- and high-RFI steers, respectively. None of these polymorphisms were related to RFI. It seems that the expression of uncoupling protein 2 and 3 and mitochondrial DNA sequence are not related to RFI status.  相似文献   

19.
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented.  相似文献   

20.
One hundred forty spring-born Angus x Gelbvieh and purebred Angus steers were selected for study as early weaned (EW; average age at weaning = 90 +/- 30 d) or traditionally weaned (TW; average age at weaning = 174 +/- 37 d) steers that were non-implanted or implanted (Synovex-S, Fort Dodge Animal Health, Overland Park, KS). Initially, steers were sorted by age, sire, and farm, and then allotted randomly in a 2 x 2 factorial arrangement of treatments of EW implanted (EWI), EW nonimplanted (EWN), TW implanted (TWI), or TW nonimplanted (TWN). Ultrasound measurements (US) of LM area (LMA), 12th rib fat thickness (US-BF), and marbling (US-M) were collected every 28 d during the time that steers were on feed. At 202 d of age, EW calves had larger US-LMA, US-BF, and BW than TW calves (37.9 vs. 32.3 cm2, 0.38 vs. 0.26 cm, and 271.6 vs. 218.9 kg, respectively; P < 0.001). At slaughter, EW calves had heavier HCW (290.4 vs. 279.7 kg, respectively; P < 0.05) and greater USDA marbling scores (51.25 vs. 46.26, respectively; P < 0.05) than TW calves; more EW steers graded USDA Choice or greater (P = 0.05). However, no differences were detected in BW (P = 0.15), LMA (P = 0.39), BF (P = 0.45), or liver abscess scores (P = 0.41). Twenty-four implanted steers were selected from the original group of 140 and sorted into two slaughter groups of 12. Twelve implanted steers from each weaning group, matched in slaughter BW but differing in age, were subsampled at slaughter to assess the effect of weaning age and chronological age on muscle tenderness. Younger animals had lower Warner-Bratzler shear force values (P < 0.001) than older calves after 14 d of postmortem aging; however, no differences were found in tenderness after 21 d of aging. Furthermore, there was greater variance (P < 0.001) in Warner-Bratzler shear force values among younger, EW steers vs. older, TW steers. These data provide evidence that early weaning of beef calves may be used as a tool to more effectively manage the cow-calf production system without compromising the quality of the offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号