首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

2.
Three experiments were conducted to evaluate the effects of roughage source and concentration on intake and performance by finishing heifers. In Exp. 1, 12 medium-framed beef heifers (average BW = 389 kg) were used in three simultaneous 4 x 4 Latin square intake trials to evaluate the effects of dietary NDF supply from alfalfa hay, sudan hay, wheat straw, or cottonseed hulls fed in each Latin square at 5, 10, or 15% of dietary DM. Within each roughage concentration, roughage NDF accounted for the majority of variation in NEg intake/kg of BW0.75 among the roughage sources. Averaged across roughage concentrations, NEg intake/kg of BW0.75 tended to be greater (P < 0.10) when heifers were fed cottonseed hulls, sudan hay, or wheat straw than when they were fed alfalfa. In Exp. 2, six medium-framed beef heifers (average BW = 273 kg) were used in a 3 x 3 Latin square design to determine whether diets containing 10% (DM basis) alfalfa, cottonseed hulls, or sudan silage differed in eating rate. Average DM eating rates did not differ (P > 0.10) among roughage sources, which we interpreted to suggest that 90% concentrate diets containing alfalfa, cottonseed hulls, and sudan silage do not differ in the amount of chewing required during eating. In Exp. 3, 105 medium-framed beef heifers (average BW = 275 kg) were used in a 140-d finishing trial to evaluate three methods of dietary roughage exchange. Alfalfa at 12.5% of the dietary DM (ALF12.5) was used as a standard, and cottonseed hulls and sudan silage were each fed at three different levels: exchanged with ALF12.5 on an equal percentage DM basis, an equal NDF basis, or an equal NDF basis, where only NDF from particles larger than 2.36 mm (retained NDF) were considered to contribute to the NDF. No differences (P > 0.10) in ADG, DMI, gain:feed ratio, or NEg intake/kg of BW0.75 were detected between alfalfa and cottonseed hulls exchanged on an equal NDF basis. For sudan silage, exchanging with ALF12.5 on an equal retained NDF basis resulted in no differences (P > 0.10) in ADG, DMI, or NEg intake/kg of BW0.75. These data provide a preliminary indication that depending on the roughage sources evaluated, roughage NDF content and(or) roughage NDF from particles larger than 2.36 mm might provide a useful index of roughage value in high-concentrate finishing diets.  相似文献   

3.
Two experiments were conducted to evaluate the effects of alfalfa hay (AH) and wet corn gluten feed (WCGF) combinations on ADG and gain efficiency of cattle limit-fed growing diets. In Exp. 1, crossbred beef steers (n = 220; initial BW = 262 kg) were limit-fed diets consisting of steam-flaked corn and 40% WCGF (DM basis) with 0, 10, or 20% ground AH (0AH, 10AH, and 20AH, respectively). A fourth diet containing 20% ground AH and steam-flaked corn served as a control. All diets were fed once daily at 1.8% of BW (DM basis). Growing period ADG, gain efficiency, and dietary NE calculated from performance data decreased linearly (P < 0.01) with addition of AH to diets containing WCGF. Rate of DMI increased linearly (P < 0.05) with AH addition to diets containing WCGF. Following the growing period, steers were finished on a common diet offered ad libitum. Gain efficiencies during the finishing period were higher (P < 0.05) for steers fed the 20AH diet than for steers fed the control diet. In Exp. 2, crossbred beef heifers (n = 339; initial BW = 277 kg) were limit-fed diets containing steam-flaked corn with 10, 20, or 30% ground AH and 0, 40, or 68% WCGF in a 3 x 3 factorial arrangement, fed once daily at 1.6% of BW (DM basis). An AH x WCGF interaction occurred (P < 0.05) for growing period ADG and gain efficiency. Increasing AH or WCGF decreased cattle ADG, gain efficiency, and dietary NE with the exception of heifers fed 30AH/40WCGF, which had ADG that did not differ (P > 0.10) from that of heifers fed 20AH/0WCGF or 30AH/0WCGF, and which had greater gain efficiencies (P < 0.05) than heifers fed 30AH/0WCGF. Rate of DMI increased linearly (P < 0.01) with increasing AH and decreased linearly (P < 0.01) with increasing WCGF. Heifers were finished on diets containing 33% WCGF with 0 or 0.5% added urea (DM basis) offered ad libitum. Increasing WCGF in growing diets tended (linear, P < 0.10) to increase finishing ADG and gain efficiency, whereas increasing AH decreased (linear, P < 0.05) kidney, pelvic, and heart fat, and the percentage of carcasses grading USDA Prime. Urea tended to increase ADG (P < 0.10), but decreased (P < 0.04) the percentage of carcasses grading USDA Choice. Results suggest that the value of WCGF relative to steam-flaked corn in limit-fed growing diets might be improved in diets containing 30% AH relative to diets containing 10 or 20% AH.  相似文献   

4.
Two experiments were conducted to measure effects of source and level of roughage on the flow of corn residues through the gastrointestinal tract of cattle. In Exp. 1, steers (195 kg) were fed diets of ground corn with 0, 30 or 60% of ground Coastal bermudagrass hay (Cynodon dactylon) [L.] Pers.) at intakes of 1, 1.5 or 2% of BW in a 9 x 9 Latin square. Experiment 2 consisted of two 4 x 4 Latin squares with either rice hulls (square 1) or ground Coastal bermudagrass hay (square 2) providing 0, 7.5, 15 or 30% of the total diet fed at 1.5% of BW. After a 28-d adjustment period, a portion of the corn in one meal was replaced with cracked corn stained with brilliant green. The concentrations of stained corn residues appearing in the feces subsequent to dosing were fitted to a one-compartment, age-dependent model and compartmental mean residence time (CMRT) and time delay (tau) were estimated. In Exp. 1, increasing the level of intake of the ration from 1% to 1.5 or 2.0% of BW increased (P less than .05) CMRT by 52% and reduced (P less than .05) tau by 41%. In Exp. 2, source of roughage had no effect (P = .95) on CMRT or tau. Combined results of the two experiments indicated that increasing proportion (P) of either roughage was associated with an exponential decline in CMRT of stained corn residues (CMRT = 1211 * e-.0315P) from rations consumed at 1.5 and 2.0% of BW. No consistent effect of roughage type or proportion was noted on time delay in the two experiments collectively. These results indicate that increasing the proportion of roughage in the diet exponentially reduces residence time of corn residues in the ruminoreticulum (CMRT) without affecting residence time in the postgastric segments (tau).  相似文献   

5.
One finishing trial and one digestibility trial were used to evaluate wet corn gluten feed (WCGF) and alfalfa hay (AH) combinations in steam-flaked corn (SFC) finishing diets. In Exp. 1, 631 crossbred heifers (initial BW = 284 +/- 7.9 kg) were fed SFC-based diets containing combinations of WCGF (25, 35, or 45% of diet DM) and AH (2 or 6% of dietary DM) in a 2 x 3 factorial arrangement of treatments. No interactions existed between WCGF and AH for heifer performance. Increasing dietary WCGF linearly decreased gain efficiency (P < 0.01), dietary NEg concentration (P < 0.05), and 12th-rib fat thickness (P = 0.10). Cattle fed 35% WCGF had the lowest occurrence of abscessed livers, resulting in a quadratic response (P < 0.05) as dietary WCGF increased. In Exp. 2, 12 ruminally cannulated Jersey steers (585 kg) were fed SFC-based diets containing combinations of WCGF (25 or 45% of diet DM) and AH (0, 2, or 6% of diet DM) in an incomplete Latin square design with a 2 x 3 factorial arrangement of treatments. Starch intake was lower (P < 0.05), but NDF intake was greater (P < 0.05) as AH and WCGF increased in the diet. Ruminal pH was increased by AH (linear, P < 0.05) and tended (P < 0.07) to increase with WCGF. Feeding 2% AH led to the greatest ruminal NH3 but the lowest total VFA and propionate (quadratic, P < 0.05). Addition of AH to diets containing 25% WCGF increased acetate to a greater extent than addition to diets containing 45% WCGF (AH x WCGF interaction, P < 0.05). Feeding 45% WCGF tended to increase passage rate (P = 0.17) and decrease (P < 0.05) total tract OM digestibility but increase (P < 0.05) in situ degradation of DM from AH and WCGF. Interactions between AH and WCGF existed (P < 0.05) for ruminal fluid volume (quadratic effect of AH x WCGF level), in situ SFC degradation (linear effect of AH x WCGF level), and in situ rate of WCGF DM disappearance (quadratic effect of AH x WCGF level). We conclude that AH levels may be decreased when WCGF is added to SFC diets as 25% or more of the dietary DM.  相似文献   

6.
Two studies were conducted to evaluate effects of wet distillers grains with solubles (WDG) and dietary concentration of alfalfa hay (AH) on performance of finishing beef cattle and in vitro fermentation. In both studies, 7 treatments were arranged in a 2 × 3 + 1 factorial; factors were dietary concentrations (DM basis) of WDG (15 or 30%) and AH (7.5, 10, or 12.5%) plus a non-WDG control diet that contained 10% AH. In Exp. 1, 224 beef steers were used in a randomized complete block (initial BW 342 kg ± 9.03) finishing trial. No WDG × AH interactions were observed (P > 0.12). There were no differences among treatments in final shrunk BW or ADG (P > 0.15), and DMI did not differ with WDG concentration for the overall feeding period (P = 0.38). Increasing dietary AH concentration tended (P < 0.079) to linearly increase DMI, and linearly decreased (P < 0.05) G:F and calculated dietary NE(m) and NE(g) concentrations. Carcasses from cattle fed 15% WDG had greater yield grades (P = 0.014), with tendencies for greater 12th-rib fat (P = 0.054) and marbling score (P = 0.053) than those from cattle fed 30% WDG. There were no differences among treatments (P > 0.15) in HCW, dressing percent, LM area, KPH, proportions of cattle grading USDA Choice, and incidence of liver abscesses. In Exp. 2, ruminal fluid was collected from 2 ruminally cannulated Jersey steers adapted to a 60% concentrate diet to evaluate in vitro gas production kinetics, H(2)S production, IVDMD, and VFA. Relative to the control substrate, including WDG in substrates increased (P < 0.01) H(2)S production and decreased total gas production (P = 0.01) and rate of gas production (P = 0.03). Increasing substrate WDG from 15 to 30% increased (P < 0.05) H(2)S production and decreased (P < 0.001) total gas production, with a tendency (P = 0.073) to decrease IVDMD and fractional rate of gas production (P = 0.063). Treatments did not significantly affect (P > 0.09) molar proportions or total concentration of VFA. Results indicate that including 15 or 30% WDG in steam-flaked corn-based diets did not result in major changes in feedlot performance or carcass characteristics, but increasing AH concentration from 7.5 to 12.5% in diets containing WDG decreased G:F. Including WDG in substrates decreased rate and extent of gas production and increased H(2)S production. Changes in various measures of in vitro fermentation associated with AH concentrations were not large.  相似文献   

7.
The value of sunflower seed (SS) in finishing diets was assessed in two feeding trials. In Exp. 1, 60 yearling steers (479 +/- 45 kg) were fed five diets (n = 12). A basal diet (DM basis) of 84.5% steam-rolled barley, 9% barley silage, and 6.5% supplement was fed as is (control), with all the silage replaced (DM basis) with rolled SS, or with grain:silage mix replaced with 9% whole SS, 14% whole SS, or 14% rolled SS. Liver, diaphragm, and brisket samples were obtained from each carcass. In Exp. 2, 120 yearling steers (354 +/- 25 kg) were fed corn- or barley-based diets containing no SS, high-linoleic acid SS, or high-oleic acid SS (a 2 x 3 factorial arrangement, n = 20). Whole SS was included at 10.8% in the corn-based and 14% in the barley-based diets (DM basis). In Exp. 1, feeding whole SS linearly increased DMI (P = 0.02), ADG (P = 0.01), and G:F (P = 0.01). Regression of ME against level of whole SS indicated that SS contained 4.4 to 5.9 Mcal ME/kg. Substituting whole for rolled SS did not significantly alter DMI, ADG, or G:F (8.55 vs. 8.30 kg/d; 1.36 vs. 1.31 kg; and 0.157 vs. 0.158, respectively). Replacing the silage with rolled SS had no effect on DMI (P = 0.91) but marginally enhanced ADG (P = 0.10) and improved G:F (P = 0.01). Dressing percent increased linearly (P = 0.08) with level of SS in the diet. Feeding SS decreased (P < 0.05) levels of 16:0 and 18:3 in both diaphragm and subcutaneous fats, and increased (P = 0.05) the prevalence of 18:1, 18:2, cis-9,trans-11-CLA and trans-10,cis-12-CLA in subcutaneous fat. In Exp. 2, barley diets supplemented with high-linoleic SS decreased DMI (P = 0.02) and ADG (P = 0.007) by steers throughout the trial, whereas no decrease was noted with corn (interaction P = 0.06 for DMI and P = 0.01 for ADG). With barley, high-linoleic SS decreased final live weight (554 vs. 592 kg; P = 0.01), carcass weight (329 vs. 346 kg; P = 0.06), and dressing percent (58.5 vs. 59.4%; P = 0.04). Steers fed high-linoleic SS plus barley had less (P < 0.05) backfat than those fed other SS diets. No adverse effects of SS on liver abscess incidence or meat quality were detected. Although they provide protein and fiber useful in formulating finishing diets for cattle, and did improve performance in Exp. 1, no benefit from substituting SS for grain and roughage was detected in Exp. 2. Because of unexplained inconsistencies between the two experiments, additional research is warranted to confirm the feeding value of SS in diets for feedlot cattle.  相似文献   

8.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

9.
Two experiments were conducted to determine the effects of wet distillers grain plus solubles (WDG; <15% sorghum grain) concentration in steam-flaked corn (SFC) diets on feedlot performance, carcass characteristics, ruminal fermentation, and diet digestibility. In Exp. 1, six hundred crossbred steers (364 ± 35 kg of BW) were used in a randomized complete block design with 8 replications/treatment. Dietary treatments consisted of a dry-rolled corn (DRC) control diet without WDG, a SFC control without WDG, and SFC with 4 WDG concentrations (15, 30, 45, 60% DM basis) replacing SFC, cottonseed meal, urea, and yellow grease. Final BW, ADG, G:F, HCW, and 12th-rib fat depth were greater (P ≤ 0.05) for SFC compared with DRC. Dry matter intake tended (P = 0.06) to be greater for DRC compared with SFC. Final BW, ADG, G:F, HCW, 12th-rib fat depth, and marbling score decreased linearly (P < 0.01) with increasing WDG concentration. In Exp. 2, six ruminally and duodenally cannulated crossbred steers (481 ± 18 kg of BW) were used in a 6 × 6 Latin square design using the same diets as Exp. 1. Ruminal, postruminal, and total tract OM and NDF digestibility were not different (P > 0.14) for DRC compared with SFC. Ruminal and total tract starch digestibility were greater (P < 0.01) for SFC compared with DRC. Dry matter and OM intake were not different (P ≥ 0.43) among WDG treatments. Ruminal and total tract OM digestibility decreased linearly (P < 0.01) with increasing WDG concentration. Intake, ruminal digestibility, and total tract digestibility of NDF increased linearly (P < 0.01) with increasing WDG concentration. Starch intake decreased linearly (P < 0.01) with increasing WDG concentration. Ruminal starch digestibility increased (P = 0.01) with increasing concentration of WDG. Total tract starch digestibility decreased quadratically (P < 0.01) with increasing concentration of WDG. Feeding SFC improved steer performance compared with DRC. The concentration of WDG and corn processing method influences nutrient digestibility and ruminal fermentation. The addition of WDG in SFC-based diets appears to negatively affect animal performance by diluting the energy density of the diet.  相似文献   

10.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

11.
Three experiments were conducted to examine the effects of an Aspergillus oryzae extract containing alpha-amylase activity on performance and carcass characteristics of finishing beef cattle. In Exp. 1, 120 crossbred steers were used in a randomized complete block design to evaluate the effects of roughage source (alfalfa hay vs. cottonseed hulls) and supplemental alpha-amylase at 950 dextrinizing units (DU)/kg of DM. Significant roughage source x alpha-amylase interactions (P < 0.05) were observed for performance. In steers fed cottonseed hulls, supplemental alpha-amylase increased ADG through d 28 and 112 and tended (P < 0.15) to increase ADG in all other periods. The increases in ADG were related to increased DMI and efficiency of gain during the initial 28-d period but were primarily related to increased DMI as the feeding period progressed. Supplemental alpha-amylase increased (P = 0.02) the LM area across both roughage sources. In Exp. 2, 96 crossbred heifers were used in a randomized complete block design with a 2 x 3 factorial arrangement of treatments to evaluate the effects of corn processing (dry cracked vs. high moisture) and supplemental alpha-amylase concentration (0, 580, or 1,160 DU/kg of DM). Alpha-amylase supplementation increased DMI (P = 0.05) and ADG (P = 0.03) during the initial 28 d on feed and carcass-adjusted ADG (P = 0.04) across corn processing methods. Longissimus muscle area was greatest (quadratic effect, P = 0.04), and yield grade was least (quadratic effect, P = 0.02) in heifers fed 580 DU of alpha-amylase/kg of DM across corn processing methods. In Exp. 3, 56 crossbred steers were used in a randomized complete block design to evaluate the effects of supplemental alpha-amylase (930 DU/kg of DM) on performance when DMI was restricted to yield a programmed ADG. Alpha-amylase supplementation did not affect performance when DMI was restricted. We conclude that dietary alpha-amylase supplementation of finishing beef diets may result in increased ADG through increased DMI under certain dietary conditions and that further research is warranted to explain its mode of action and interactions with dietary ingredients.  相似文献   

12.
Four experiments were conducted to evaluate the influence of changing the proportion of supplemental degradable intake protein (DIP) from urea on forage intake, digestion, and performance by beef cattle consuming either low-quality, tallgrass prairie forage (Exp. 1, 2, and 4) or forage sorghum hay (Exp. 3). Experiments 1, 2, and 3 were intended to have four levels of supplemental DIP from urea: 0, 20, 40, and 60%. However, refusal to consume the 60% supplement by cows grazing tallgrass prairie resulted in elimination of this treatment from Exp. 1 and 2. Levels of supplemental DIP from urea in Exp. 4 were 0, 15, 30, and 45%. Supplements contained approximately 30% CP, provided sufficient DIP to maximize digestible OM intake (DOMI) of low-quality forage diets, and were fed to cows during the prepartum period. In Exp. 1, 12 Angus x Hereford steers (average initial BW = 379) were assigned to the 0, 20, and 40% treatments. Forage OM intake, DOMI, OM, and NDF digestion were not affected by urea level. In Exp. 2, 90 pregnant, Angus x Hereford cows (average initial BW = 504 kg and body condition [BC] = 5.0) were assigned to the 0, 20, and 40% treatments. Treatment had little effect on cow BW and BC changes and calf birth weight, ADG, or weaning weight. However, pregnancy rate tended to be lowest (P = 0.13) for the greatest level of urea. In Exp. 3, 120 pregnant, crossbred beef cows (average initial BW = 498 kg and BC = 4.6) were assigned to the 0, 20, 40, and 60% treatments. Prepartum BC change tended (P = 0.08) to be quadratic (least increase for 60% treatment), although BW change was not statistically significant. Treatment effect on calf birth weight was inconsistent (cubic; P = 0.03), but calf ADG and weaning weight were not affected by treatment. Pregnancy rate was not affected by prepartum treatment. In Exp. 4, 132 pregnant, Angus x Hereford cows (average initial BW = 533 and BC = 5.3) were assigned to the 0, 15, 30, and 45% treatments. Prepartum BC loss was greatest (quadratic; P = 0.04) for the high-urea (45%) treatment, although BW loss during this period declined linearly (P < 0.01). Prepartum treatment did not affect pregnancy rate, calf birth weight, or ADG. In conclusion, when sufficient DIP was offered to prepartum cows to maximize low-quality forage DOMI, urea could replace between 20 and 40% of the DIP in a high-protein (30%) supplement without significantly altering supplement palatability or cow and calf performance.  相似文献   

13.
Two experiments were conducted to determine the dietary value of pellets containing kenaf (Hibiscus cannabinus cv. 'Everglade 41') hay. Averaged across both experiments, kenaf pellets contained 82.6% kenaf hay, 16.6% liquid molasses, and 0.8% mineral oil. The chemical composition of the kenaf pellet was 12.6% crude protein (CP), 41.2% neutral detergent fiber (NDF), and 14.4% acid detergent fiber (ADF). In Exp. 1 (digestion and N balance trial), 18 lambs (body weight [BW] = 36.4 kg) were blocked by BW. Lambs were randomly assigned within a block to Diet 1 (59.5% corn and 40.5% alfalfa pellet), Diet 2 (59.7% corn, 28.4% alfalfa pellets, and 11.9% kenaf pellets), or Diet 3 (59.6% corn, 16.5% alfalfa pellets, and 23.9% kenaf pellets). Diets were formulated so that CP was the first-limiting nutrient. Each diet was limit-fed at 2.4% of BW. Replacing alfalfa pellets with kenaf pellets tended to decrease (P = 0.10) CP and ADF intakes, but increased (P = 0.01) DM digestibility. Diet had no effect (P = 0.33) on N balance. In Exp. 2 (dry matter [DM] intake trial), 32 lambs (BW = 30.4 kg) were blocked by gender and BW. Within a block, lambs were randomly assigned to one of four diets in a 2 x 2 factorial arrangement. Main effects were hay (bermudagrass or fescue) and supplemental protein source (kenaf or alfalfa pellets). Lambs were housed in individual pens with ad libitum access to the assigned hay. Supplemental protein was fed (185 g of DM) once daily. Hay intake was measured weekly for 8 wk. Lambs consumed more (P = 0.002) fescue than bermudagrass hay (743 vs 621 g/ d). Lambs fed fescue hay gained weight more rapidly (P = 0.001) than lambs fed bermudagrass hay (120 vs 72 g/d). Hay intake and ADG were similar (P = 0.90) for lambs fed alfalfa or kenaf pellets. Kenaf hay mixed with molasses and mineral oil can be formed into a pellet. In the diets used in this experiments, kenaf pellets can replace alfalfa pellets in diets fed to lambs without altering forage intake, gain, or N retention.  相似文献   

14.
A feedlot growth performance experiment and 2 metabolism experiments were conducted to evaluate dietary roughage concentration and calcium magnesium carbonate in steers fed a high-grain diet. In Exp. 1, one hundred ninety-two crossbred yearling steers (320 +/- 10 kg of initial BW) were fed diets based on steam-flaked corn with 0, 0.75, or 1.5% CaMg(CO(3))(2). There were no effects (P > or = 0.13) on ADG, DMI, G:F, or total water intake due to CaMg(CO(3))(2). In Exp. 2, five ruminally and duodenally fistulated steers (263 +/- 9 kg of initial BW) were used in a 5 x 5 Latin square design, with 5 dietary treatments arranged in a 2 x 2 + 1 factorial: 1) 3.8% dietary roughage and no CaMg(CO(3))(2); 2) 7.6% dietary roughage and no CaMg(CO(3))(2); 3) 11.4% dietary roughage and no CaMg(CO(3))(2); 4) 3.8% dietary roughage and 1.5% CaMg(CO(3))(2); and 5) 7.6% dietary roughage and 1.5% CaMg(CO(3))(2). Water consumption was less (quadratic, P = 0.003) when 7.6% dietary roughage was fed compared with 3.8 or 11.4% dietary roughage. Intake of DM was not affected (P > or = 0.16) by dietary roughage or by CaMg(CO(3))(2). Poststomach and total tract starch digestion decreased (linear, P < 0.01) as dietary roughage increased. Ruminal pH tended (P = 0.08) to increase as dietary roughage increased but was not affected (P = 0.60) by CaMg(CO(3))(2). In Exp. 3, DMI and ruminal pH were continuously monitored in a 6 x 6 Latin square design using 6 ruminally and duodenally fistulated Holstein steers (229 +/- 10 kg of initial BW). A 3 x 2 factorial treatment structure was utilized, with factors consisting of dietary roughage concentration (4.5, 9.0, or 13.5%) and CaMg(CO(3))(2) inclusion (0 or 1.0%) to replace MgO and partially replace lime-stone. A dietary roughage x CaMg(CO(3))(2) interaction (P = 0.01) occurred as steers consuming 13.5% roughage, 1.0% CaMg(CO(3))(2) had greater DMI per meal than those consuming 4.5% dietary roughage, no CaMg(CO(3))(2) and 9.0% dietary roughage, 1.0% CaMg(CO(3))(2). Steers consuming 13.5% dietary roughage, 1.0% CaMg(CO(3))(2) and 9.0% dietary roughage, no CaMg(CO(3))(2) had greater meal length (min/meal; P = 0.01) than steers consuming 4.5% dietary roughage, no CaMg(CO(3))(2). Total tract OM digestibility decreased linearly (P = 0.01), and ruminal pH increased linearly (P = 0.01) with increasing dietary roughage concentration. Inclusion of CaMg(CO(3))(2) can replace limestone and MgO but did not produce ruminal pH responses similar to those observed by increasing dietary roughage in high-concentrate diets.  相似文献   

15.
In four feeding trials with beef steers, corn silage (CS), alfalfa hay (AH), and alfalfa silage (AS) were compared as roughage sources in dry-rolled (DRC); dry whole (DWC); ground, high-moisture (GHMC); and whole, high-moisture corn (WHMC) fattening diets. In processed corn diets (DRC and GHMC), steers fed CS had lower DMI (P less than .05) and feed:gain ratios (P less than .10) than steers fed AS as the roughage source. In a separate trial, greater gains (P less than .10) and lower feed:gain ratios (P less than .05) were found during the initial feeding period, which included the adaptation phase, for steers fed CS vs steers fed AH as the roughage source. Over the entire feeding period, lower (corn type x roughage source interaction, P less than .05) feed:gain ratios were found in GHMC diets when CS was fed as the roughage source; feed:gain ratios were similar in steers fed DRC diets containing either CS or AH. Over the entire feeding period, similar performance was found among steers fed the various roughage sources in DWC diets; however, with WHMC diets, steers fed AS as the roughage source had lower feed:gain ratios than did steers fed AH (P less than .05) or CS (P greater than .10). In the processed corn diets, high correlations were found between diet NDF digestibility and gain (r = .80), intake (r = .68), and feed:gain ratios (r = -.66); similar trends were found in WHMC diets but not in DWC diets. These results suggest that the ideal roughage source to complement finishing diets may depend on corn processing method and feeding period (adaptation vs finishing).  相似文献   

16.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

17.
Three experiments were conducted to evaluate the response of supplementing primiparous heifers based on the metabolizable protein (MP) system during pregnancy and lactation. In Exp. 1, 12 pregnant, March-calving heifers (432 +/- 10 kg) grazing Sandhills range were randomly allotted to one of two treatments: supplementation based on either the MP system (MPR) or the CP system (CPR). Supplements were fed to individual heifers from October to February and no hay was offered. Grazed forage organic matter intake (FOMI) was measured in November, January, and February. In Exp. 2, 18 heifers (424 +/- 8 kg) were randomly allotted to one of three treatments: 1) supplementation based on the MP system with hay fed in January and February (average 2.0 kg/d; MPR/hay), 2) supplementation based on the CP system, with hay fed in January and February (CPR/hay), or 3) supplementation based on the MP system, with no hay fed (MPR/no hay). Supplements were fed from October to February, and FOMI was measured in December and February. In Exp. 3, lactating 2-yr-old cows (394 +/- 7 kg) maintained on meadow hay were supplemented to meet either 1) MP requirements (LMPR) or 2) degradable intake protein requirements (LDIPR). Body weight (BW) and body condition score change, hay intake, and milk production were measured. In Exp. 1, grazed FOMI decreased (P = 0.0001) from 1.9% of BW in November to 1.2% in February, but no differences among treatments were detected for FOMI or BW change. In Exp. 2, grazed FOMI declined (P = 0.0001) from 1.7% of BW in December to 1.1% in February, with no differences among treatments. Heifers on the MPR/hay and CPR/hay treatments had higher (P = 0.0018) total intake (grazed forage + hay intake) in February (1.7% BW) than the MPR/no hay heifers (1.1% BW). Heifers on the MPR/no hay treatment had a lower weight (P = 0.02) and tended (P = 0.11) to have a lower BCS than heifers on other treatments. In Exp. 3, the LMPR cows had higher (P = 0.02) ADG than LDIPR cows (0.41 and 0.14, respectively), but treatment did not affect milk production. Organic matter hay intake averaged 2.4% of BW. We conclude that supplementation to meet MP requirements had little benefit to heifer performance during gestation, but increased weight change during lactation. Because grazed forage intake decreased from 1.9 to 1.1% of BW with advancing gestation, supplemental energy is necessary to reduce weight and condition loss of gestating hefiers grazing dormant Sandhills range.  相似文献   

18.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

19.
In three experiments the interrelationship between dietary CP and recombinant porcine somatotropin (rpSt, i.m. daily) on ADG, feed efficiency (F/G) and carcass traits was examined in crossbred Yorkshire gilts and barrows given ad libitum access to their diets during the finishing period (55 to 110 kg BW). Pigs, blocked by BW and gender, were assigned (four/pen) within block. In Exp. 1, 140 pigs were assigned two/gender per pen to each of five pens/block and received a diet of either 12%, 18% or 24% CP (n = 2, 1 and 2 pens/block, respectively). Pigs received rpSt, either 0 or 120 micrograms/kg BW (12% and 24% CP groups) or 60 micrograms/kg BW (18% CP group). When CP was 12%, rpSt decreased ADG and increased F/G (P less than .05), whereas when CP was 18% or 24%, rpSt increased ADG and lowered F/G (P less than .05). Backfat thickness was reduced (P less than .05) by rpSt regardless of CP. In Exp. 2, 120 pigs were assigned two/gender per pen to each of five pens/block and received a diet of 24% CP. Either 0, 15, 30, 60 or 120 micrograms of rpSt/kg BW was administered to each pig. All doses of rpSt increased ADG, lowered F/G and decreased backfat thickness compared with measurements for control pigs (P less than .05). In Exp. 3, 140 pigs were assigned two/gender per pen to each of seven pens/block and received a diet of either 14%, 18% or 24% CP (n = 3, 2 and 2 pens/block, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two experiments were conducted to evaluate alkaline hydrogen peroxide-treated wheat straw (AHPWS) in cattle growing (Exp. 1) and finishing (Exp. 2) diets. In Exp. 1, 162 crossbred steers (257 kg) were fed 66% roughage diets in an 84-d growth trial to compare AHPWS to corn silage (CS) and to evaluate different supplemental CP sources and levels. A completely randomized design with a 3 x 3 factorial arrangement of treatments was used. Factors were roughage source (CS, a 1:1 mixture of CS:AHPWS [MIX] and AHPWS) and CP treatment (13 and 11% CP with supplemental CP provided by soybean meal [13-SBM] and [11-SBM] and 11% CP with a combination of urea, corn gluten meal, and fish meal [UGF]). Lasalocid was fed at the rate of 200 mg per steer daily. Steers fed AHPWS had decreased (P less than .01) DMI compared with steers fed MIX and CS. This may be due to increased dietary Na from residual Na in AHPWS. With each incremental increase in AHPWS, ADG and gain/feed decreased (P less than .01). Dry matter intakes (kg/d), ADG (kg), and gain/feed for CS, MIX, and AHPWS were 8.0, 1.56, and .19; 8.2, 1.33, and .16; and 7.5, 1.08, and .14, respectively. Decreased performance by steers fed AHPWS may be due, in part, to a negative interaction between the lasalocid and dietary minerals. There were no differences in performance due to CP supplementation. In Exp. 2, AHPWS was compared to alfalfa hay (AH) and CS at 10 and 20% of dietary DM (2 x 3 factorial) in a 127-d finishing trial with 108 crossbred steers (341 kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号