首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mildew epidemics in 1980 on winter wheat cv. Sadovo 1 near Sofia, Bulgaria, were studied in detail. Half of the experimental plots were artificially inoculated, whereas the others were naturally infected. Fungicide treatments on all plots consisted of from nil to three applications of triadimefon. On four days, mildew severity, plant height and the yield components ear length, number of kernels, and grain weight per ear were determined. Mildew incidence showed to be a simple and reliable predictor of yield loss. It is suggested that mildew incidence can be used for decision making in the supervised control of wheat mildew in Bulgaria.Samenvatting Sofia, Bulgarije, in detail bestudeerd. Van 32 veldjes van 1 m2 groot, in vier blokken van acht veldjes verdeeld over een groot tarweperceel, werd de helft kunstmatig geïnfecteerd met meeldauw, terwijl de andere helft aan natuurlijke infectie werd blootgesteld. De bespuitingen variëerden van een tot drie bespuitingen met triadimenfon, alsmede een onbespoten controle. Op drie dagen werden aantastingsgraad en incidentie van meeldauw bepaald aan de drie bovenste bladlagen. Een aantal relaties werd berekend tussen incidentie, aantastingsgraad en opbrengstvariabelen (planthoogte, aarlengte, aantal korrels per aar, korrelgewicht per aar). In ontwikkelingsstadium F 10.1 bleek meeldauw-incidentie een eenvoudige en betrouwbare maat te zijn voor toekomstige opbrengstderving. Meeldauw-incidentie kan als maat gebruikt worden bij de geleide bestrijding van meeldauw in Bulgarije, maar er zullen nog veel proeven nodig zijn om dit doel te bereiken.  相似文献   

2.
Effects of ploughing or direct drilling with three methods of straw disposal on amounts of inoculum of Pyrenophora teres , and on frequency of infection and severity of net blotch in the autumn, were studied in winter barley. Prior to ploughing, many conidia of P. teres were caught above areas where infected straw from a previous crop of winter barley had been bated and removed leaving culm bases, or where barley straw had been chopped and left in situ , but relatively few were caught above areas where straw had been burnt. Thereafter, where ploughing had buried surface residues, irrespective of the method of straw disposal, conidia were not caught for at least 3 weeks, and subsequently were substantially fewer than in direct-drilled areas where many spores were caught. Production of conidia (measured as numbers per unit length of straw) was greatest on chopped straw, less on culm bases and least on burnt straw residues. Sporulation on volunteer barley plants was much reduced by application of paraquat + diquat, but some still occurred on visually'dead'volunteer barley.
All direct-drilled barley plants were diseased within 27 days of sowing, whereas 42 days elapsed before all plants sown in ploughed areas were diseased. Disease on individual plants was also more severe in direct-drilled areas: 20% of the area of the first leaf to emerge was diseased 19 days after crop emergence in direct-drilled plots, whereas less than 9% was diseased in ploughed areas 50 days after emergence.
There was an additive effect of straw disposal methods and direct-drilling on disease, which in turn affected plant vigour. The adverse effect of direct-drilling on the incidence and severity of net blotch appeared to be far greater than that of the straw disposal methods.  相似文献   

3.
小麦内生细菌对全蚀病的防治作用及其机制   总被引:2,自引:1,他引:2       下载免费PDF全文
小麦全蚀病是世界各大小麦产区危害十分严重的一种土传病害,目前对其防治还没有好的抗病品种和特别有效的化学农药。自从成功地用荧光假单胞菌Pseudomonas fluoresens防治小麦全蚀病以来,生物防治逐渐成为防治该病的一种经济而有效的措施[1]。近几年,内生菌由于其独特的优点已成为生物防治的研究热点,但对其防病机制的研究仍不够深入,作者对健康小麦上获得的5株内生细菌防治小麦全蚀病的作用及其机制进行了研究,为其进一步应用提供依据。1材料与方法1.1供试菌及其培养:小麦全蚀病菌9826Gaeu-mannomyces graminisvar.tritici(简称Ggt)与小…  相似文献   

4.
ABSTRACT Wheat was assessed at four crop growth stages for take-all (Gaeumannomyces graminis var. tritici) in a series of field trials that studied the effects of five wheat management practices: sowing date, plant density, nitrogen fertilizer dose and form, and removal/burial of cereal straw. An equation expressing disease level as a function of degree days was fitted to the observed disease levels. This equation was based on take-all epidemiology and depended on two parameters reflecting the importance of the primary and secondary infection cycles, respectively. Early sowing always increased disease frequency via primary infection cycle; its influence on the secondary cycle was variable. Primary infection and earliness of disease onset were increased by high density; however, at mid-season take-all was positively correlated to the root number per plant, which was itself negatively correlated to plant density. At late stages of development, neither plant density nor root number per plant had any influence on disease. A high nitrogen dose increased both take-all on seminal roots and severity of primary infection cycle but decreased take-all on nodal roots and secondary infection cycle. Ammonium (versus ammonium nitrate) fertilizer always decreased disease levels and infection cycles, whereas straw treatment (burial versus removal of straw from the previous cereal crop) had no influence.  相似文献   

5.
The effect of take-all root lesions on nitrate uptake of wheat was investigated in two experiments under controlled conditions. Plants were supplied with a nutrient solution labelled with 15N during stem elongation and flowering to assess the distribution of the isotopic tracer in the different plant organs, and particularly in root segments located on both sides of take-all lesions. The 15N atom percentage excess measured in root segments located below lesions longer than 1 cm was reduced on average by half compared with that in healthy roots and root segments above lesions, reflecting a reduction in nitrogen uptake by these root segments. This reduction probably resulted from the invasion and breakdown of phloem vessels by the fungus hyphae, interrupting energy supply and thus the uptake process. Severely infected plants showed an increase in the uptake rate per unit of efficient root, which appeared to be a compensatory response to reduction of efficient root biomass in order to satisfy shoot nitrogen demand. However, this compensatory response was insufficient to ensure nitrogen accumulation equivalent to that of healthy plants, as reductions in nitrogen accumulated in roots and aerial parts at flowering were up to 56 and 49%, respectively, for plants with more than 50% of the root system below lesions longer than 1 cm.  相似文献   

6.
The incidence and severity of take-all, caused by Gaeumannomyces graminis var. tritici (Ggt), in susceptible crops depend on climate, soil characteristics and cropping practices. Take-all can be controlled by modifying crop rotation, crop management and fungicide treatment. When available, fungicides are used as a seed treatment and are partially effective. There is currently no reliable method for helping farmers to optimise their choice of cropping system to improve take-all control. In this study, we defined 16 models, based on various mathematical functions and input variables, for predicting disease incidence in a wheat crop as a function of soil characteristics, climate, crop rotation and crop management. The parameters of these models were estimated from field experiments carried out at six sites in the north of France over a ten-year period. The root mean squared error of prediction (RMSEP) values of the models were estimated by cross validation and compared. RMSEP was in the range 16.34–65.93% and was higher for the models based on multiplicative functions. The lowest RMSEP value was obtained for a dynamic model simulating disease incidence during the crop cycle and which included among input variables the percentage of diseased plants determined at GS30.  相似文献   

7.
Point pattern analysis (fitting of the beta-binomial distribution and binary form of power law) was used to describe the spatial pattern of natural take-all epidemics (caused by Gaeumannomyces graminis var. tritici ) on a second consecutive crop of winter wheat in plots under different cropping practices that could have an impact on the quantity and spatial distribution of primary inoculum, and on the spread of the disease. The spatial pattern of take-all was aggregated in 48% of the datasets when disease incidence was assessed at the plant level and in 83% when it was assessed at the root level. Clusters of diseased roots were in general less than 1 m in diameter for crown roots and 1–1·5 m for seminal roots; when present, clusters of diseased plants were 2–2·5 m in diameter. Anisotropy of the spatial pattern was detected and could be linked to soil cultivation. Clusters did not increase in size over the cropping season, but increased spatial heterogeneity of the disease level was observed, corresponding to local disease amplification within clusters. The relative influences of autonomous spread and inoculum dispersal on the size and shape of clusters are discussed.  相似文献   

8.
Alfalfa, maize, sorghum and sugarbeet plants were inoculated with zoospores ofPhytophthora andPythium species in order to assess the effects of inoculum density, plant age and temperature on disease severity. Seedlings were grown axenically in test tubes and inoculated with zoospore suspensions. Disease severity was assessed by measuring the root growth and discoloration of treated and control seedlings. The incremental root length of all plants decreased and root discoloration increased as inoculum concentration of the pathogen increased. Changes were more intensive among low levels of zoospore concentrations and no significant differences in disease severity were found for inoculum densities higher than 104 zoospores ml-1. Disease severity was negatively related to plant age. Disease development on sugarbeet seedlings infected withPythium andPhytophthora species was affected by temperature, but the pattern of response was determined by the pathogen’s temperature preferences. The incremental root length decreased as temperature increased up to 25°C. The effect ofPythium dissimile andPhytophthora cactorum on root length was significantly lower at 35°C than at 25°C, whereasPythium aphanidermatum andPhytophthora nicotianae caused significant damage to roots even at 35°C. http://www.phytoparasitica.org posting Dec. 3, 2001.  相似文献   

9.
ABSTRACT To determine the relationship between incidence (I; proportion of diseased spikes) and severity (S; mean proportion of diseased spikelets per spike) for Fusarium head blight of wheat and to determine if severity could be predicted reliably from incidence data, disease assessments were made visually at multiple sample sites in artificially and naturally inoculated research and production fields between 1999 and 2002. Ten distinct data sets were collected. Mean disease intensity ranged from 0.023 to 0.975 for incidence and from 0.0003 to 0.808 for severity. A model based on complementary log-log transformation of incidence and severity performed well for all data sets, based on calculated coefficients of determination and random residual plots. The I-S relationship was consistent among years and locations, with similar slopes for all data sets. For 7 of the 10 data sets and for the pooled data from all locations and years, the estimated slope from the fit of the model ranged from 1.03 to 1.26. Time of disease assessment affected the relationship between incidence and severity; however, the estimated slopes from each assessment time were also close to 1. Based on the width of the 95% prediction interval, severity was estimated more precisely at lower incidence values than at higher values. The number of sampling units and the index of dispersion of disease incidence had only minor effects on the precision with which S was predicted from I. The estimation of mean S from I would substantially reduce the time required to assess Fusarium head blight in field surveys and treatment comparisons, and the observed relationship between I and S could be used to identify genotypes with some types of disease resistance.  相似文献   

10.
ABSTRACT The effects of take-all epidemics on winter wheat yield formation were determined, and disease-yield relationships were established to assess the agronomic efficacy and economic benefits of control methods. Epidemics were generated in naturally infested fields by varying cropping season, crop order in the rotation, and experimental fungicide seed treatment. Disease incidence and severity were assessed from tillering to flowering. Yield components were measured at harvest. Models simulating the formation of the yield components in the absence of limiting factors were used to estimate the losses caused by take-all. Losses were predicted by the disease level at a specific time or the area under the disease progress curve, reflecting accumulation during a specific period. Losses of grain number per square meter and 1,000-grain weight were linked to cumulative disease incidence between the beginning of stem elongation and flowering, and disease incidence at midstem elongation, respectively. Yield losses were accounted for by both cumulative disease incidence between sowing and flowering, and disease incidence at midstem elongation. Results confirm the importance of nitrogen fertilization in reducing the impact of take-all on wheat.  相似文献   

11.
Garrett KA  Mundt CC 《Phytopathology》2000,90(12):1307-1312
ABSTRACT The use of host diversity as a tool for management of potato late blight has not been viewed as promising in the past. But the increasing importance of late blight internationally has brought new consideration to all potential management tools. We studied the effect of host diversity on epidemics of potato late blight in Oregon, where there was little outside inoculum. The experimental system consisted of susceptible potato cv. Red LaSoda and a highly resistant breeding selection, inoculated with local isolates of US-8 Phytophthora infestans. Potatoes were grown in single-genotype plots and also in a mixture of 10 susceptible and 26 resistant potato plants. Half of the plots received inoculation evenly throughout the plot (general inoculation) and half received an equal quantity of inoculum in only one corner of the plot (focal inoculation). The area under the disease progress curve (AUDPC) was greater in single genotype stands of susceptible cv. Red LaSoda inoculated throughout the plot than with stands inoculated in one focus. The host-diversity effect on foliar late blight was significant in both years of the investigation; the AUDPC was reduced by an average of 37% in 1997 and 36% in 1998, compared with the mean disease level for the potato genotypes grown separately. Though the evidence for influence of inoculum pattern on host-diversity effects was weak (P = 0.15), in both years there was a trend toward greater host-diversity effects for general inoculation. Statistical significance of host-diversity effects on tuber yield and blight were found only in one of the two years. In that year, tuber yield from both the resistant and susceptible cultivar was increased in mixtures compared with single genotype stands and tuber blight was decreased in mixtures for susceptible cv. Red LaSoda.  相似文献   

12.
Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.  相似文献   

13.
ABSTRACT Epidemiological modeling is used to examine the effect of silthiofam seed treatment on field epidemics of take-all in winter wheat. A simple compartmental model, including terms for primary infection, secondary infection, root production, and decay of inoculum, was fitted to data describing change in the number of diseased and susceptible roots per plant over thermal time obtained from replicated field trials. This produced a composite curve describing change in the proportion of diseased roots over time that increased monotonically to an initial plateau and then increased exponentially thereafter. The shape of this curve was consistent with consecutive phases of primary and secondary infection. The seed treatment reduced the proportion of diseased roots throughout both phases of the epidemic. However, analysis with the model detected a significant reduction in the rate of primary, but not secondary, infection. The potential for silthiofam to affect secondary infection from diseased seminal or adventitious roots was examined in further detail by extending the compartmental model and fitting to change in the number of diseased and susceptible seminal or adventitious roots. Rates of secondary infection from either source of infected roots were not affected. Seed treatment controlled primary infection of seminal roots from particulate inoculum but not secondary infection from either seminal or adventitious roots. The reduction in disease for silthiofam-treated plants observed following the secondary infection phase of the epidemic was not due to long-term activity of the chemical but to the manifestation of disease control early in the epidemic.  相似文献   

14.
15.
小麦全蚀病菌不同致病力菌株的致病特点   总被引:2,自引:0,他引:2       下载免费PDF全文
利用小麦种子根接种小麦全蚀病菌Gaeumannomyces graminis var.tritici,研究了不同致病力菌株的致病特点。结果表明,弱致病菌株可侵染小麦,但罹病过程缓慢,接种第5天仅在皮层观察到少量菌丝体,13天有少量菌丝进入中柱,中柱组织在菌丝侵入前褐变,未出现导管堵塞现象,也不能导致典型的黑根症状。强致病菌株接种第2天可侵入皮层,8天即进入中柱,并在寄主组织内产生大量菌丝体,致使寄主皮层组织和中柱细胞大量褐变和坏死,以及导管堵塞。  相似文献   

16.
In seven field experiments conducted over 6 years with a wide range of disease severities, triticale was intermediate in resistance to Gaeumannomyces graminis between wheat (susceptible) and rye (resistant). Use of triticale is suggested as an immediately available means of introducing take-all resistance into cereal cultivation.
Octoploid triticale was slightly more susceptible than hexaploid triticale. There was little evidence of consistent variation in resistance among wheat or rye cultivars but a few hexaploid triticale cultivars varied in resistance. The resistance of triticale was not reliably expressed in the glasshouse tests used, so selection for resistance to take-all in a breeding programme would need to be conducted in the field. Individual pairs of rye chromosomes added to wheat did not significantly reduce its susceptibility. The feasibility of transferring the resistance of rye to wheat is considered.  相似文献   

17.
18.
ABSTRACT Epidemiological modeling, together with parameter estimation to experimental data, was used to examine the contribution of disease-induced root growth to the spread of take-all in wheat. Production of roots from plants grown in the absence of disease was compared with production of those grown in the presence of disease and the precise form of diseaseinduced growth was examined by fitting a mechanistic model to data describing change in the number of infected and susceptible roots over time from a low and a high density of inoculum. During the early phase of the epidemic, diseased plants produced more roots than their noninfected counterparts. However, as the epidemic progressed, the rate of root production for infected plants slowed so that by the end of the epidemic, and depending on inoculum density, infected plants had fewer roots than uninfected plants. The dynamical change in the numbers of infected and susceptible roots over time could only be explained by the mechanistic model when allowance was made for disease-induced root growth. Analysis of the effect of disease-induced root production on the spread of disease using the model suggests that additional roots produced early in the epidemic serve only to reduce the proportion of diseased roots. However, as the epidemic switches from primary to secondary infection, these roots perform an active role in the transmission of disease. Some consequence of disease-induced root growth for field epidemics is discussed.  相似文献   

19.
为了解河南省郑州市中牟市小麦全蚀病菌的变种类型及进化情况,筛选全蚀病菌侵染小麦的分子标记,采用形态学观察、科赫氏法则验证、ITS序列分析和系统进化树构建等方法对分离的小麦全蚀病菌进行鉴定,并对其侵染后小麦病原相关蛋白(pathogen-related protein,PR)基因的表达进行实时定量PCR分析。结果表明,显微形态观察初步确定分离的小麦全蚀病菌为禾顶囊壳Gaeumannomyces graminis(Sacc.)v. Arx.Olivier,经科赫氏法则验证、ITS序列比对及系统进化树分析进一步证明该病菌均为禾顶囊壳。本研究分离的小麦全蚀病菌与地域相距较远的英国、美国的小麦全蚀病菌间的同源性比与来自中国陕西省的小麦全蚀病菌的同源性更高。采用禾顶囊壳4个变种的特异性引物进行PCR扩增,所有分离病菌均扩增出了小麦变种的特异性条带,证实分离菌株为禾顶囊壳小麦变种G. graminis var. tritici。实时定量PCR分析发现,病原相关蛋白基因PR4a、PR4b、PR2、PR10受到小麦全蚀病菌侵染后表达量均显著上调,在侵染后第5~6天达到最高峰,表明这些基因可作为小麦全蚀病菌侵染小麦的标志性基因。  相似文献   

20.
旱地春小麦不同覆盖栽培水肥效应研究   总被引:6,自引:2,他引:6  
2002年在宁夏西吉县对旱地春小麦膜侧栽培技术及其膜下加盖秸秆和单纯秸秆覆盖栽培技术进行了试验研究。结果表明:这些技术措施都具有明显的节水增效作用,以膜下加盖秸秆效果最为突出。它不仅能改善土壤物理化学性状,平抑地温,提高降水利用率,而且增强了植株活力和群体动态发育,抑制田间杂草,增加土壤有机质,保证了农田土壤肥力的可持续提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号