首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
为了充分利用葵花籽的工业生产副产物,该文以葵花籽壳为原料,采用硫酸水解法制备葵花籽壳纳米纤维素。通过单因素试验研究了酸解温度、酸解时间、硫酸质量分数和液料比4个因素对纳米纤维素得率的影响,应用响应面法对工艺参数进行优化,并对制备得到的纳米纤维素进行了透射电镜(transmission electron microscopy,TEM)、红外光谱(Fourier transform infrared spectroscopy,FT-IR)和X-射线衍射(X-ray diffraction,XRD)等分析。结果表明:当酸解温度为42℃、酸解时间为83.71 min、硫酸质量分数为59.97%、液料比为12.33:1时,预测得出纳米纤维素得率为31.67%,验证试验纳米纤维素得率为31.31%。制备的葵花籽壳纳米纤维素呈棒状,直径为10~30 nm,长度为150~300 nm,仍然具有纤维素的基本化学结构,结晶度较高,属于典型的纤维素Ⅰ型结晶结构。该文研究结果可以为葵花籽的综合利用提供参考。  相似文献   

2.
为了满足人们对新型储能设备的需求,以生物质尤其是农林废弃物基炭材料作为电极材料的超级电容器备受关注.该研究以农业废弃物材料刀豆壳作为前驱体,采用KOH活化方法制备高比面积活性炭并作为超级电容器电极材料.以材料比电容为响应值,活化温度和活化比例为试验因素,采用中心复合设计方法(CCD,Central Composite ...  相似文献   

3.
利用廉价的农业废弃物稻草秸秆,选择磷酸氢二铵为活化剂在不同的活化温度和预氧化条件下来制备活性炭。应用N2吸附-脱附等温曲线对产品表面孔结构进行表征,采用热重分析来研究稻草秸秆的活化过程。结果表明,同其他处理方法相比,先浸泡后预氧化处理并在700℃下活化制得的样品不但有最大的比表面积(1078.21m^2·g^-1),其得率和碘吸附值也最大,分别为39.75%和636mg·g^-1热重分析表明磷酸氧二铵的浸泡可以增加稻草秸秆的热稳定性。不论是否经过预氧化,制得的样品平均孔径在2-3nm。(NH4)2HPO4的浸泡可以明显地增加样品的比表面积从而增加其吸附性能。  相似文献   

4.
为了探究热解终温对油茶壳热解产物特性的影响,实现油茶壳热解多联产产物的有效利用,该文研究了油茶壳300~700℃热解过程中气、液、固的得率,特性和能量分布规律,讨论了油茶壳热解炭制备活性炭的工艺条件。研究表明,随着热解终温的升高,生物质炭得率下降,不可凝气体得率上升,生物质油得率则呈现先上升后下降的变化趋势。生物质炭的能量产率高达47.21%~81.59%,是油茶壳热解的主要产物,随着热解终温的升高,其固定碳含量增大,BET比表面积先增加后减小,在600℃达到最高值278 m2/g。油茶壳活性炭制备的最佳工艺条件活化温度850℃,活化时间1.5 h,水蒸气用量与炭的比2.0,此条件下的活性炭得率为37.47%,碘吸附值为825 mg/g,BET比表面积为736 m2/g。该研究为油茶壳热解多联产工艺及产物的综合有效利用提供参考依据。  相似文献   

5.
为优化文冠果种仁制取生物柴油的工艺,基于中心复合(central composite desig)试验设计方法,采用了文冠果种仁的提取和生物柴油的合成一步完成的工艺。进行了以生物柴油得率为响应值,提取/反应温度、石油醚用量、甲醇用量和NaOH用量为自变量的优化试验,将试验数据拟合建立了数学模型,该模型能够较准确的预测文冠种仁一步法合成生物柴油的得率。结果表明,优化工艺为:提取/反应温度为77℃,石油醚用量为6:1(体积质量比),甲醇用量为文冠果种仁的12%(体积质量比),NaOH用量为文冠果种仁的0.3%(质量比),此时生物柴油得率为65.44%。  相似文献   

6.
两种改性磷矿粉的制备与表征   总被引:4,自引:0,他引:4  
选用天然磷矿粉为原材料,通过硫酸酸化、有机无机活化剂活化分别制得酸化磷矿粉和活化磷矿粉。采用扫描电镜观察、X-射线衍射分析、激光粒度测试,证明了90%的酸化磷矿粉粒径为4.227 μm,90%的活化磷矿粉粒径达到220 nm。活化磷矿粉结晶度降低,比表面积增大,有利于磷素在土壤中的释放与吸附。此种制备方法开辟了磷肥生产新工艺。  相似文献   

7.
淀粉基赋钾保水剂的制备表征与保水释钾性能优化   总被引:2,自引:0,他引:2  
为优化合成一种兼具吸水和释钾功能的淀粉基赋钾保水新材料,该研究通过单因素和正交试验,比较分析了不同反应条件对淀粉基赋钾保水剂吸液释钾性能的影响;并通过红外光谱和扫描电镜表征了原矿白云母、活化白云母和赋钾保水剂的结构和形貌特征。结果表明:反应温度950 ℃,助熔剂NaCl和白云母质量比2:1,煅烧2 h时对白云母的活化效果最好,释钾率和释钾量分别达到92%和32.4 mg/g。淀粉、交联剂、引发剂、丙烯酰胺添加量和中和度分别为20%、0.02%、0.4%、25%和80%,活化白云母用量20%时,赋钾保水剂达到最大吸液倍率358 g/g(蒸馏水)和155 g/g(自来水),且重复吸水倍率也明显大于纯淀粉基保水剂;40 ℃下,25 h后赋钾保水剂仍能维持40%以上的初始水分。该赋钾保水剂吸水溶胀过程符合非Fickian扩散,由水分子扩散和高分子链段松弛过程共同决定。赋钾保水剂的累积释钾量随活化白云母用量的增加而增大,静水浸提9 d后,钾释放量和释放率分别增加2.59和3.64倍。活化白云母除了部分以物理填充形式存在于淀粉基保水剂中外,还有部分粉末在聚合过程中与有机物发生了反应。赋钾保水剂粗糙的表面有利于其吸水释钾性能的发挥。分析认为,该研究中合成的淀粉基赋钾保水剂兼具保水持水和重复吸水性能,而且对钾素具有缓释和促释作用。  相似文献   

8.
利用废弃物互花米草厌氧发酵渣为原料,以H3PO4为活化剂,于N2保护下,在不同的活化温度(400~700℃)和剂料质量比(0.5~3.0)条件下制备活性炭,以低温液氮(N2/77.4 K)吸附测定活性炭的比表面积、孔容及孔径分布,以FTIR、pHPZC测定分析活性炭表面化学性质;以亚甲基蓝为特征污染物,考察所制备的活性炭成品的吸附能力。结果表明,随着剂料质量比的增大,活性炭孔径分布变宽,中孔所占比例增大;在所考察的活化温度范围内,活性炭N2吸附容量大小与BET比表面积呈现相同的趋势。活化温度为500℃、剂料质量比为2.0条件下所制备的活性炭对亚甲基蓝的吸附性能良好,最大吸附容量可达243.90 mg.g-1,符合Langmuir吸附等温模型。亚甲基蓝Langmuir最大吸附容量与活性炭BET比表面积存在一定的线性关系。该活性炭制备方法为互花米草厌氧发酵渣的综合利用找到了新的途径。  相似文献   

9.
利用脂肪酶LVK在以正己烷为溶剂的体系中催化菜籽油与乙醇酯交换合成生物柴油。为提高酯交换率,采用响应面实验设计和分析方法对菜籽油的酯交换反应条件进行优化,得到最佳工艺条件:醇油摩尔比5.3:1,脂肪酶与油脂的质量比为15%,反应温度40℃,反应时间34.5h,溶剂(正已烷)量18.4%,乙醇一次加入,在此工艺条件下菜籽油的酯交换率达到93.48%。结果表明正己烷体系能很好解决乙醇与菜籽油的互溶性,消除乙醇对脂肪酶的毒害作用。  相似文献   

10.
本实验以茉莉花茶为供试材料,优化茶多糖的提取工艺,旨在提高茶多糖的提取率,为茶叶深加工提供理论依据。在单因素实验的基础上,利用Box-Benhnken的中心组合设计,选定温度、水料比和沉淀茶多糖时所用的乙醇浓度3个因素分别选3水平进行中心组合实验,通过响应面分析实验,拟合出数学模型:Y=6.55+1.30A+0.83B+1.10C-0.092AB+0.11AC+0.34BC-1.56A2-0.64B2-1.48C2。利用该函数关系来优化茶多糖提取条件,最终确定茶多糖的最佳浸提条件为:浸提温度100℃;水料比为26.8;乙醇浓度为90%。在该条件下茶多糖得量有所提高,且验证值为7.8610mg/g,比单因素最高提取率高25.6%,表明响应面法可有效用于茶多糖提取方法的优化。  相似文献   

11.
针对当前生物质基多孔活性炭电极材料制备能耗高、性能调控难的瓶颈,提出活化氧化梯级热处理技术,以实现降本提质和探析多孔活性炭理化结构及其性能调控机制。该研究以废弃竹屑为原料,采用KHCO3活化和低温空气氧化制备多孔活性炭,探讨不同活化氧化温度协同作用下多孔活性炭的理化结构和电化学性能。结果表明,相较于600 ℃活化的多孔活性炭(PAC-600),增加了350 ℃低温空气氧化工艺后制备的多孔活性炭(PAC-600-350)的比表面积由154.361提升至264.235 m2/g。随着氧化温度由200升高到350 ℃,多孔活性炭氧元素含量增加、表面含氧基团(-C=O-O、-C-OH等)增多,其缺陷程度和润湿性增强。三电极测试中,相较于PAC-600多孔活性炭,经空气氧化的PAC-600-350在电流密度为1 A/g时的比电容为215.29 F/g,比电容提高至1.47倍。二电极测试中,在功率密度为215 W/kg时,PAC-600-350对称电容器的能量密度达到9.06 Wh/kg,且在5 A/g电流密度和5000次循环充放电后,PAC-600-350的电容保持率为86.59%,在超级电容器储能方面具备较大的应用潜力,该研究可为农林废弃物高值化利用提供参考。  相似文献   

12.
Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号