首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several races of Fusarium oxysporum Schlechtend.:Fr f. sp. ciceris (Padwick) Matuo and K. Sato cause economic losses from wilting disease of chickpea ( Cicer arietinum L.). While the genetics of resistance to race 1 have been reported, little is known of the genetics of resistance to race 4. We undertook a study to determine the inheritance of resistance and identified random amplified polymorphic DNA markers (RAPDs) linked to the gene for resistance. For the investigation, we used 100 F5 derived F7 recombinant inbred lines (RILs) that had been developed from the cross of breeding lines C-104 x WR-315. Results indicated that resistance is controlled by a single recessive gene. The RAPD markers previously shown to amplify fragments linked to race 1 resistance also amplified fragments associated with race 4 resistance. The RAPD loci, CS-27700, UBC-170550 and the gene for resistance to race 4 segregated in 1:1 ratios expected for single genes. Both RAPD markers were located 9 map units from the race 4 resistance locus and were on the same side of the resistance gene. Our results indicated that the genes for resistance to race 1 and 4 are 5 map units apart. The need to determine the genomic locations of race specific resistance genes and the possibility that these genes are clustered to the same genomic region should be investigated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Fusarium wilt caused by Fusarium oxysporum Schlechtend.: Fr f. sp. ciceris (Padwick) Matuo & Sato is a devastating disease of chickpea. The current study was conducted to determine the inheritance of the gene(s) for resistance to race 4 of fusarium wilt and to identify linked RAPD markers using an early wilting line, JG-62, as a susceptible parent. Genetic analysis was performed on the F1s, F2s and F3 families from the cross of JG-62 × Surutato-77. The F3 families were inoculated with a spore suspension of the race 4 wilt pathogen and the results were used to infer the genotypes of the parent F2 plants. Results indicated that two independent genes controlled resistance to race 4. Linkage analysis of candidate RAPD marker, CS-27700, and the inferred F2 phenotypic data showed that this marker locus is linked to one of the resistance genes. Allelism indicated that the two resistance sources, Surutato-77 and WR-315, shared common alleles for resistance and the two susceptible genotypes, C-104 and JG-62, carried alleles for susceptibility. The PCR-based marker, CS-27700, was previously reported to be linked to the gene for resistance to race 1 in a different population which suggested that the genes for resistance to races 1 and 4 are in close proximity in the Cicer genome. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

4.
J. W. Scott  J. P. Jones 《Euphytica》1989,40(1-2):49-53
Summary Resistance to fusarium wilt, incited by Fusarium oxysporum (Schlecht.) f. sp. lycopersici (Sacc.) Snyder & Hansen race 3 in tomato (Lycopersicon esculentum Mill.) was discovered in LA 716, a L. pennellii accession. A resistant BC1F3 breeding line, E427, was developed from LA 716. E427 was crossed with the susceptible cv. Suncoast and F1, BCP1, BCP2 (to Fla 7155, a susceptible parent) F2, F3, and BCP2S1 seeds were obtained. Segregation for resistance following root dip inoculation over three experiments indicated a single dominant gene controlled resistance. Five of the 12 BCP1S1's segregated more susceptible plants, whereas one of the 12 segregated more resistant plants than expected (P<0.05). Three of 23 F3 lines segregated more susceptible plants than expected while 1 of the 23 had more resistant plants than expected (P<0.05). Segregation in all other lines fit expected ratios. Five of the 23 F3's were homozygous resistant which was an acceptable fit to expectations (P=0.1–0.5). The gene symbol I 3 is proposed for resistance to race 3 of the wilt pathogen. Deviations from expected ratios in data reported here and for other breeding lines indicate an effect of modifier genes and/or incomplete penetrance. Plant age at inoculation and seed dormancy did not affect results.Florida Agricultural Experiment Station Journal Series No. 8101.  相似文献   

5.
A total of 1915 Kabuli chickpea lines were screened in a wilt sick plot containing Fusarium oxysporum f.sp. ciceri race 0 at Béja, Tunisia. Complete resistance was found in 110 lines and this result was confirmed by a laboratory screening method. Principal components analysis showed that > 80% of the variation of the resistant lines was explained by hundred seed weight and days to maturity. Cluster analysis divided the resistant lines into four groups: 21 had high seed weight (48.25 ± 3.81 g) and early maturity (95.09 ± 2.50 d), 24 had high seed weight (46.84 ± 2.10 g) and late maturity (117.00 d), 34 had low seed weight (22.35 ± 4.72 g) and early maturity (92.97 ± 3.97 d) and 31 had low seed weight (19.62 ± 5.37 g) and late maturity (112.09 ± 4.51 d). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Root rot of lettuce, which is caused by Fusarium oxysporum f. sp. lactucae (FOL), is a critical problem in the production of lettuce. FOL-resistant lettuce genetic resources have been identified and used in breeding programs to produce FOL-resistant cultivars. However, the genetic characteristics of resistance genes have not been studied in depth and, therefore, no DNA markers are presently available for these genes. In this study, we analyzed the RRD2 (resistance for root rot disease race 2) locus, which confers resistance to FOL race 2. Resistance loci were analyzed using two cultivars of crisphead lettuce: VP1013 (resistant) and Patriot (susceptible). The segregation patterns of resistant phenotypes in F2 indicated a single major locus. To define the positions of resistance loci, a linkage map was constructed using amplified fragment length polymorphism and random amplified polymorphic DNA (RAPD) markers. Quantitative trait loci analysis revealed the position of the major resistance locus. A high LOD score was observed for RAPD-marker WF25-42, and this marker showed good correspondence to the phenotype in different cultivars and lines. We successfully developed a sequence characterized amplified region marker from WF25-42.  相似文献   

7.
8.
Wild Lycopersicon accessions were screened for resistance to the Fusarium wilt disease caused by Fusarium oxysporum f.sp. lycopersici (Fol) race 1 and race 2. In total, four isolates of each race were used. Among 17 accessions of six Lycopersicon species tested, a wide genetic variation for wilt resistance was observed. Most accessions were highly susceptible, some showed intermediate resistance, but one accession of L. cheesmanii (G1.1615 = PI 266375) and two accessions of L. chilense (G1.1556 and G1.1558) were highly resistant to Fol races 1 and 2. The resistance in the latter three accessions equalled or was higher than the resistance determined by the known I-genes, that have been widely used in breeding programmes. These newly found resistant accessions provide breeders with more opportunities for Fusarium disease resistance and may contribute to our understanding of Fusarium disease resistance gene organisation and evolution.  相似文献   

9.
The inheritance of resistance to fusarium wilt (Fusarium oxysporum f.sp. lini) was investigated in Linum usitatissimum as a first step towards gaining an understanding of the molecular genetics of the disease and developing a procedure for marker-assisted selection. A recombinant doubled haploid (DH) population was derived from the haploid component of polyembryonic F2 seeds originating from a cross between a wilt resistant, twinning Linola™ Linola is a registered trademark of CSIRO line CRZY8/RA91 and the wilt susceptible Australian flax cultivar Glenelg. The segregation of resistance was studied in 143 DH lines under glasshouse and field conditions. Most of the phenotypic variation was attributable to the segregation of two independent genes with additive effects. Minor resistance genes may have also contributed by modifying the resistance response. A glasshouse screening method of DH lines proved a reliable indicator of field resistance to fusarium wilt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
棉花枯萎病菌生理小种的分子指纹分析   总被引:10,自引:0,他引:10  
以我国棉花枯萎菌3个生理小种的26个代表菌株及国外3 个不同生理小种菌株进行随机扩增多态性DNA(RAPD)分析,共产生了140个RAPD分子标记,其中878% 具有多态性。通过聚类分析将供试菌株划分为6个RAPD组,确定了不同小种间的亲缘关系,为确立我国棉花枯萎菌生理小种在国际上的分类地位提供了可靠的分子证据。  相似文献   

11.
M. Staniaszek    E. U. Kozik    W. Marczewski 《Plant Breeding》2007,126(3):331-333
Fusarium oxysporum f. sp. lycopersici inhabits most tomato-growing regions worldwide, causing tomato production yield losses. A molecular marker linked to resistance would be useful for tomato improvement programmes. Thus, a cleaved amplified polymorphic sequence (CAPS) marker TAO1902 was developed to identify tomato genotypes possessing the I-2 gene, which confers resistance to F. o. lycopersici race 2. The Rsa I or Fok I restriction fragments corresponded to the presence or absence of the I-2 allele in a segregating 100 F2 progeny, tomato cultivars, 16 resistant and 20 susceptible to Fusarium wilt, respectively, lines and F1 hybrids, representing various tomato gene pools. TAO1902 may be helpful for selection of F. o. lycopersici -resistant tomato germplasm.  相似文献   

12.
Fusarium wilt of bananas (also known as Panama disease), caused by the soil-borne fungus Fusarium oxysporum f. sp cubense (Foc), is a serious problem to banana production worldwide. Genetic resistance offers the most promising means to the control of Fusarium wilt of bananas. In this study, the inheritance of resistance in Musa to Foc race 1 was investigated in three F2 populations derived from a cross between ‘Sukali Ndizi’ and ‘TMB2X8075-7’. A total of 163 F2 progenies were evaluated for their response to Fusarium wilt in a screen house experiment. One hundred and fifteen progenies were susceptible and 48 were resistant. Mendelian segregation analysis for susceptible versus resistant progenies fits the segregation ratio of 3:1 (χ2 = 1.72, P = 0.81), suggesting that resistance to Fusarium wilt in Musa is conditioned by a single recessive gene. We propose panama disease 1 to be the name of the recessive gene conditioning resistance to Fusarium wilt in the diploid banana ‘TMB2X8075-7’.  相似文献   

13.
香蕉过氧化物酶基因表达和酶活性与香蕉抗枯萎病的关系   总被引:1,自引:1,他引:0  
为了获得能反应香蕉遭受枯萎病侵染的标记基因。通过随机克隆测序的方法从香蕉根系cDNA文库中获得一个过氧化物酶基因,命名为MaPOD1(GenBank登录号为KC478598)。扩增获得的cDNA序列与质粒序列一致,表明该基因是香蕉POD基因编码框全长cDNA,包含一个948 bp的最大开放阅读框,编码一个长328个氨基酸的蛋白质。蛋白质序列同源比对发现其含有过氧化物酶活性位点和亚铁血红素配体位点结构。实时荧光定量PCR分析表明该基因在香蕉根和假茎中表达量较高;在球茎中的表达量最低。在耐病和感病品种中,MaPOD1均上调表达,但在耐病品种中MaPOD1在所有时间点相对于对照增加的倍数均高于感病品种,表明在该基因在香蕉的抗病性中起着重要作用。该基因的表达与酶活变化趋势相同,基因表达滞后于酶活变化。MaPOD1可以作为一个新的响应枯萎病侵染的标记基因。  相似文献   

14.
Summary Fusarium wilt (Fusarium udum Butler) is a soil borne disease of pigeonpea which causes substantial yield losses. The disease can occur at any stage of plant development, from the young seedling to the pod filling stage. Though resistance is simply inherited, transfer to locally adapted cultivars has been difficult due to linkage drag and difficulty in accurate phenotyping, except in sick plots. An attempt was made to identify RAPD markers associated with wilt phenotype by using F2 populations derived from contrasting parents; GSl (susceptible) ‘ICPL87119 (resistant) and GS1’ ICP8863 (resistant). Parents and F2s were grown in a national Fusarium sick-plot at Gulbarga, India and phenotyped as resistant or susceptible during the entire crop growth period. In both the crosses, resistance to wilt segregated as a monogenic dominant character. DNA samples extracted from sick plot grown, early seedling stage plants of parents and 254 F2 plants of GS1 × ICPL87119 were held separately for marker identification. PCR reactions using 340 random decamer primers with genomic DNA of parents resulted in detection of 45 polymorphic amplicons from 39 primers. PCR testing of bulked DNA from subsets of resistant and susceptible plants revealed the presence of two amplicons at 704 bp and 500 bp (OPM03704 and OPAC11500) with susceptibility. Analysis of individual F2 plants showed a segregation ratio of 3: 1 for the presence: absence of the amplicon in both crosses. Considering the wilt reaction and susceptibility-linked RAPD marker, it was possible to deduce genotype of every F2 plant and the genotypic ratio for wilt reaction was 1RR: 2Rr: 1rr, as expected.  相似文献   

15.
胡麻枯萎病生防放线菌的抗菌活性研究   总被引:2,自引:0,他引:2  
为了筛选对胡麻枯萎病有较好抗性的放线菌,试验对胡麻根围土壤进行了筛选,最终得到1株对胡麻枯萎病病原菌尖孢镰刀菌有较强拮抗作用的放线菌GS2-1.分别测定了它对不同地区分离得到的151株尖孢镰刀菌的抗性,发酵液对孢子和菌丝的抑制作用,研究了其最佳发酵条件,并对发酵液中的抑菌活性物质进行了初步提取和生物活性测定,最后对其在...  相似文献   

16.
棉花枯萎病菌AFLP分子标记体系的建立及初步应用   总被引:1,自引:0,他引:1  
建立并优化了基于HaeⅢ/PstⅠ酶切的棉花枯萎病菌AFLP分析的最佳反应体系,并从32对引物组合中筛选出适合该反应体系的引物组合3对.应用该技术对存在于我国的棉花枯萎病菌3号、7号和8号生理小种的标准菌株进行分析,结果表明该技术能够有效地将这3个标准菌株区分开;通过该体系对来自我国4个省的20个棉花枯萎病菌菌株进行分...  相似文献   

17.
尖孢镰刀菌古巴专化型(Fusarium oxysporum f.sp.cubense)是引起香蕉枯萎病的病原菌,其中1号生理小种(Foc1)侵染粉蕉品种,而4号生理小种(Foc4)则危害粉蕉和香牙蕉品种。为探讨Foc1和Foc4致病性差异的遗传基础,本文根据已经公布的番茄枯萎病菌(Fusarium oxysporum f.sp.radicis-lycopersici)基因组序列,利用同源克隆的方法,分离到一个重要的致病基因——fga1,比较了不同区域Foc1和Foc4fga1基因cDNA和gDNA序列的差异。结果表明Foc1中fga1基因保守性很强,含有3个内含子和4个外显子,蛋白产物含353个氨基酸;所研究材料中Foc4fga1基因80%都有2个转录本,小转录本与Foc1fga1一致,而大转录本第三个内含子由于可变性剪切使得其成为外显子,预测编码一个372个氨基酸的多肽;来自海南三亚的Foc1和Foc4的fga1基因gDNA和cDNA长度分别为1286bp和1092bp,相似性均为100%。  相似文献   

18.
本文对低酚棉与有酚棉的抗病和感病品种及其杂交后代进行了研究。结果表明,在种子中棉酚含量及色素腺体密度与品种的抗枯萎病性没有相关性。在幼苗中,低酚棉幼苗棉酚含量均显著高于有酚棉品种,但它们之间的抗枯萎病性也没有显著差异。在低酚棉与有酚棉品种杂交的F2代群体中,无色素腺体和稀色素腺体类型苗的抗病性明显高于腺体密度较高的类型苗。对7个杂交组合F2代中有色素腺体和无色素腺体幼苗的抗病性分析表明,无色素腺体类型苗的病指显著低于有色素腺体类型苗的病指。幼苗人工接种枯萎菌后,棉酚含量表现升高,但抗病品种低于感病品种。  相似文献   

19.
In tomato ( Lycopersicon esculentum Mill.) a single dominant gene ( Frl) on chromosome 9 confers resistance to fusarium crown and root rot (crown rot) incited by Fusarium oxysporum f. sp. radicis-lycopersici. To identify randomly amplified polymorphic DNA (RAPD) markers linked to Frl, crown rot susceptible and resistant tomato lines were screened for polymorphisms using 1000 random 10-mer primers and three reliable RAPD markers were found linked to Frl (UBC #'s 116, 194, and 655). A codominant polymorphic PCR marker of TG101, a restriction fragment length polymorphic (RFLP) marker linked to Frl, was developed to facilitate the linkage studies. Using TG101 and the four RAPD markers, on a Frl segregating backcross population of 950 plants indicated that all belong to the same linkage group. The polymorphic allele order was found to be TG101 – 655 – 116 – 194 – Frl. UBC 194 was found to be 5.1 cM from Frl in this population. Furthermore, it was the only marker found in the resistant genotypes ‘Mocis’ and Fla 7226, whereas resistant genotypes ‘Momor’, Ohio 89-1, and Fla 7464 all had UBC 194 and UBC #'s 116, 194, and 655. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号