首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascochyta blight caused by Ascochyta rabiei, is the most destructive disease in many chickpea growing countries. Disease development varies with the growth stage and host resistance. Hence, disease development was studied in cvs ICCX 810800 (resistant), ICCV 90201 (moderately resistant), C 235 (moderately susceptible), ICCV 96029 and Pb 7 (susceptible) under controlled environment (ICRISAT, Patencheru) and field conditions (Dhaulakuan, Himachal Pradesh) at seedling, post-seedling, vegetative, flowering and podding stages. Under controlled environment, the incubation period and terminal disease reaction (TDR) did not vary significantly at different growth stages against virulent isolate AB 4. Cultivars ICCX 810800, ICCV 90201 and C 235 showed a significantly longer incubation period than the susceptible cv. Pb 7. Cultivar ICCX 810800 showed slow disease progress and the least TDR. Field experiments were conducted during the 2003–2004 and 2004–2005 growing seasons. During 2003–2004, TDR was higher in plants inoculated at podding and the flowering stage and the lowest disease reaction was recorded in ICCX 810800. A severe epidemic during 2004–2005 was attributed to the favourable temperature, humidity and well distributed high rainfall. TDR did not differ significantly at any of the growth stages in susceptible cvs ICCV 96029 and Pb 7. With respect to seeding date and cultivar, the highest yield was recorded in the early-sown crop (1,276.7 kg ha−1) and in ICCV 90201 (1,799.3 kg ha−1), respectively. The yields were greatly reduced in all the cultivars during 2004–2005 and the highest yield was recorded in ICCX 810800 (524.7 kg ha−1). Integrated disease management using resistant cultivars, optimum sowing period and foliar application of fungicides will improve chickpea production. The experiment under controlled environment and field conditions (during the epidemic year) showed a similar disease development.  相似文献   

2.
The aetiology of blight of chickpea in South Australia was studied following sporadic disease outbreaks over several years that had been tentatively identified as Phoma blight. Nine fungal isolates from diseased chickpeas were tested for pathogenicity in the glasshouse, of which two caused symptoms resembling those of Ascochyta blight. The two aggressive isolates were identified as Ascochyta rabiei based on morphological characteristics of cultures and RAPD analysis. This was further confirmed by successful mating to international standard isolates, which showed that the two Australian isolates were MAT1-1. These isolates are accessioned as DAR 71767 and DAR 71768, New South Wales Agriculture, Australia. This is the first time that A. rabiei has been positively identified in commercial chickpeas in the southern hemisphere. The pathogen was found (in 1992) in only one of 59 seed samples harvested throughout Australia between 1992 and 1996 and tested using International Seed Testing Association methods. The teleomorph has not been found in Australia and results to date suggest that only one mating type is present. This suggests that quarantine restrictions on imported chickpea seed should be retained to prevent the introduction of the opposite mating type.  相似文献   

3.
Ascochyta blight (AB, Ascochyta rabiei (Pass.) Lab.) is one of the most important foliar disease of chickpea (Cicer arietinum L.), globally. Chickpea is attacked by AB at any growth stage in cool and humid weather depending on the inoculum availability. However, the disease epidemics are most prominent during the flowering and podding growth stages. The main objective of this study was to determine the effect of growth stages of chickpea on the genetic resistance of AB and use this information in a resistance breeding program. Two susceptible and two moderately resistant chickpea cultivars were spray inoculated at seedling (GS1), post-seedling (GS2), vegetative (GS3), flowering (GS4) and podding (GS5) growth stages with A. rabiei conidial suspension under controlled environment conditions. Irrespective of crop cultivars the incubation period (IP) was shorter in GS1, GS4 and GS5 and was significantly extended in GS2 and GS3. Symptom development was delayed significantly in moderately resistant cultivars. The AB severity 10 days after inoculation ranged between 7 and 9 on susceptible cultivars and 3 and 5 on moderately resistant cultivars. Further the correlation coefficient of disease severity between GS1, GS4 and GS5 was highly significant (r = 0.95) indicating that, evaluation for resistance to AB can be done at GS 1 (seedling stage), and or GS4 (flowering stage) to GS5 (podding stage) growth stages of chickpea. This supports the evaluation for AB resistance using 10-day-old-seedlings in controlled environment at ICRISAT and adult plant field screening at hot-spot locations in Dhaulakuan and Ludhiana in India.  相似文献   

4.
The incidence and severity of Ascochyta blight in potted chickpea trap plants exposed for 1-wk periods near infested chickpea debris in Córdoba, Spain, or in chickpea trap crops at least 100 m from infested chickpea debris in several locations in southern Spain were correlated with pseudothecial maturity and ascospore production ofDidymella rabiei from nearby chickpea debris. The period of ascospore availability varied from January to May and depended on rain and maturity of pseudothecia. The airborne concentration of ascospores ofD. rabiei was also monitored in 1988. Ascospores were trapped mostly from the beginning of January to late February; this period coincided with that of maturity of pseudothecia on the chickpea debris. Most ascospores were trapped on rainy days during daylight and 70% were trapped between 12.00 and 18.00 h. Autumn-winter sowings of chickpea were exposed longer to ascospore inoculum than the more traditional spring sowings because the autumn-winter sowings were exposed to the entire period of ascospore production on infested chickpea debris lying on the soil surface.  相似文献   

5.
Various crop and weed species were infected naturally by Didymella rabiei (anamorph: Ascochyta rabiei) in blight-affected chickpea fields in the Palouse region of eastern Washington and northern Idaho, USA. The fungus was isolated from asymptomatic plants of 16 species commonly found in commercial crops in this region. Isolates of the pathogen from crop and weed species were pathogenic to chickpea and indistinguishable in cultural and morphological characteristics from isolates of D. rabiei from chickpea. Both mating types of D. rabiei were isolated from eight naturally infected plant species. Chickpeas were infected by D. rabiei when plants emerged through infested debris of seven crop and weed species. The teleomorph developed on overwintered tissues of seven plant species infected naturally by D. rabiei in a blight screening nursery and on debris of wheat, white sweet clover and pea inoculated with ascospores of D. rabiei or conidia of two compatible isolates of the pathogen. Didymella rabiei naturally infected 31 accessions of 12 Cicer spp. and the teleomorph developed on the overwintered debris of all accessions, including those of three highly resistant perennial species. The fungus developed on the stem and leaf pieces of ten plant species common to southern Spain inoculated with conidia of two compatible isolates of D. rabiei, and formed pseudothecia with asci and viable ascospores on six of ten species and pycnidia with conidia on all plant species.  相似文献   

6.
7.
Production of the solanapyrone toxins by Ascochyta rabiei is nutrient dependent. When grown on a medium consisting entirely of expressed sap from the aerial parts of young chickpea plants (PSM). only low concentrations of the solanapyrones were produced (< 24 μM). However, toxicity of 4-day-old culture filtrates to isolated cells of chickpea leaflets was comparable with that obtained from 12-day-oId culture filtrates on Czapek Dox nutrients supplemented with chickpea seed extract or cations—media that are conducive to solanapyrone production. The additional toxic component which peaked at 4 days in culture was heat labile, losing about 50% of its activity on boiling for 10 min. Affinity for solid-phase extraction media, precipitation with ammonium sulphate and acetone, ionization properties and UV absorption characteristics suggested that the toxin was a polypeptide. The toxin was purified by solid-phase extraction, acetone precipitation and high performance liquid chromatography (HPLC) on a C2 column. Hydrolysis of the purified toxin yielded 14 amino acids, and calculation of the numbers of residues of each amino acid suggested a molecular mass of 7, 551 Da, A band corresponding to this molecular mass was present on SDS-PAGE gels. However, both the native peptide and its hydrolysate contained a compound that reacted with p -anisaldehyde suggesting the possibility of a glycosidic moiety.  相似文献   

8.
In order to determine the most appropriate dates for planting chickpea in central Anatolia, Turkey, six cultivars were planted at three sites that differed in disease pressure. In two of the sites, disease pressure from Ascochyta rabiei was promoted by spreading infected chickpea debris on the soil surface at the time of planting and, at one of these, sprinkle irrigation was applied. In the third site, where conditions were dryer, no artificial inoculum was provided. Plants from seeds sown in early March had the most disease and in the sprinkle irrigated plots the disease severity ranged from 7.8 on the most susceptible cv. Canitez to 3.3 on the least susceptible Gokce as scored on the 1–9 scale where 1 = no disease and 9 represents a plant killed by the fungus. There was an inverse relationship between disease severity and yield, production from blight resistant cultivars of around 2,000 kg ha−1 being more than twice that of susceptible ones. Delaying planting for 3–5 weeks reduced the severity of ascochyta blight but also reduced the yields in four of the six cultivars. In contrast, reduction in disease severity by delayed sowing resulted in yield increases for the susceptible cvs Canitez and Local, although yield level was not as much as those of the less susceptible cvs sown early. Delay of 6–9 weeks almost eliminated ascochyta blight but yields of all cultivars were seriously compromised by drought stress. In consequence, chickpea farmers are recommended to use resistant or tolerant cultivars and sow early in March. For less resistant cultivars, sowing in early April is recommended. Further delay is not recommended unless irrigation is provided and fungicide spraying is recommended where signs of infection are present under conditions conducive to the disease.  相似文献   

9.
10.
Five chickpea cultivars, Chitoui, Neyer, Kasseb, Beja 1 and Bouchra, were planted on three sowing dates at two Experimental Stations in Tunisia: Bou Salem in the north and the more southerly Mornag, where the climate is drier. Severity of blight, caused by Ascochyta rabiei, was measured on a 1–9 scale (defined) on vegetative parts and on pods as percent infected and percent infected that were empty. At both locations, disease was essentially absent on plants sown on the third dates but present on plants sown on the two earlier dates. At Bou Salem, disease severity was highest for the second sowing date whereas at Mornag it was highest for the first sowing date; but for each sowing date, disease severity was lower at Mornag than at Bou Salem. Yield components were measured as number of pods per plant, number of seeds per plant, number of seeds per 100 pods, 100 seed weight and weight of seeds per plant. Both disease severity and yield differed significantly among sowing dates (differently at each location) and also among cultivars for each sowing date, these differences depending both on sowing date and location. A lower yield was always associated with a higher disease severity, although the quantitative relationship differed between cultivars and locations. Cultivar Beja 1 had the lowest vegetative disease scores at both locations and both sowing dates 1 and 2. Beja 1 also scored well for all yield components. Plants sown on the third (latest) date gave the highest yields for all cultivars at both locations (except for an unusually high yield of Neyer at Mornag on sowing date 2), in some instances being more than double those from the earlier sowing dates. Thus, in contrast to other studies, late sowing did not result in yield loss.  相似文献   

11.
BACKGROUND: The objective of this study was to investigate spray drift from a conventional field sprayer as influenced by meteorological and technical factors, and to provide spray operators with data on which to base sound judgements when applying pesticides. The study was conducted in grazing fields and cereal crops. RESULTS: Interpreting the results from 15 field trials under varying meteorological conditions using different boom heights and driving speeds indicates that, during normal spraying conditions, the most decisive factors influencing the total spray drift (TSD) will be boom height and wind speed, followed by air temperature, driving speed and vapour pressure deficit. One important finding was that TSD (within the encompassed range of meteorological conditions and a boom height of 0.4 m) could be expressed as a simple function of the fraction of droplets ≤ 100 µm. In cereal crops: TSD = 0.36 + 0.11× [fr. (d ≤ 100 µm)] and in grazing fields, TSD = 1.02 + 0.10× [fr. (d ≤ 100 µm)]. In most cases a fraction of the airborne drift passed over the 6 m sampling mast located 5 m downwind of the spray swath. CONCLUSIONS: Under specified conditions, the present results indicate a simple relation between the total spray drift and volume fractions of droplets ≤ 100 µm. Given the nozzle type, it was concluded that the most decisive factors determining TSD are wind speed and boom height. Evaluating the relative importance of the meteorological and technical factors contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
European Journal of Plant Pathology - Ascochyta blight epidemics have been observed in many countries since the early 1900s but studies on an interaction between the amount of inoculum,...  相似文献   

13.
A population study of Ascochyta rabiei from the Canadian prairies was conducted to assess pathogenicity among isolates with the objectives to investigate the existence of a race or pathotype structure and to evaluate whether there had been a shift to higher aggressiveness between 1998 and 2002. Ninety-nine isolates collected in 1998, 2001 and 2002 were inoculated onto seven differential chickpea genotypes. Significant isolate × differential interactions occurred, but accounted for a small proportion of the total variability. It was found that very few interaction effects between all combinations of differentials and isolates were significant and frequency distributions of disease severity of isolates tested on the differentials revealed continuous distributions. These results suggest that no genotype-specific relationship existed between A. rabiei and its host and that Canadian populations of the pathogen cannot be objectively classified into races or pathotypes. Isolates from 2001 and 2002 caused significantly more disease than isolates from 1998, suggesting that disease epidemics encountered since 1999 were in part caused by a shift in the population to higher aggressiveness.  相似文献   

14.
Didymella rabiei, the causal agent of ascochyta blight, survives on infected seeds and seedlings. Diseased seedlings originating from infected seeds occasionally serve as the source for primary infection in chickpea crops. Experiments carried out independently in Australia and in Israel provided quantitative information on the temporal and spatial distribution of ascochyta blight from initial infections and on the relationship between the amount of initial infection and the intensity of subsequent epiphytotics for cultivars differing in susceptibility to the pathogen. Disease spread over short distances (<10 m) from individual primary infections, was governed by rain and wind, and was up to five times greater down-wind than up-wind. Cultivar response to D. rabiei significantly affected the distance and area over which disease spread and the intensity of the disease on infected plants. At onset of the epiphytotic, the relationship between disease spread and time was exponential (P < 0.05; R 2 > 0.95) and the area of the resulting foci was over 10 times greater in susceptible cultivars than in resistant cultivars. Regression equations showed the relationship between disease severity and the distance from the focus-plants was inverse-linear for all cultivars tested (P < 0.05). A simulation model based on the experimental data revealed that even if primary infection is infrequent (less than 1% of plants), the consequences are potentially devastating when susceptible cultivars are used. The epidemiological information and simulation model generated by this study provide an increased understanding of the development of an epiphytotic in which the primary foci of disease originate from infected chickpea seedlings.  相似文献   

15.
16.
Forty-eight chickpea germplasm lines, including 22 differentials used in previous studies, were characterized for disease phenotypes following inoculation with six isolates of Didymella (anamorph Ascochyta ) rabiei , representing a wide spectrum of pathogenic variation. Representative isolates were also directly compared with six previously identified races on eight chickpea genotypes. Many of the chickpea differentials reacted similarly to inoculation with each isolate of D. rabiei , and several previously identified races caused similar levels of disease on the differentials. This indicates that the number of differentials can be reduced significantly without sacrificing accuracy in describing pathogenic variation of D. rabiei on chickpea. Pathogenic variation among samples of US isolates allowed classification of the isolates into two pathotypes. The distribution of disease phenotypes of the 48 germplasm lines was bimodal after inoculation with pathotype I isolates, whereas the distribution of disease phenotypes was continuous after inoculation with pathotype II isolates. Such distinct distribution patterns suggest that chickpea plants employ different resistance mechanisms to each pathotype and that the two pathotypes may have different genetic mechanisms controlling pathogenicity. The advantages of using the two-pathotype system in assaying pathogenicity of the pathogen and in studying resistance mechanisms of the host are discussed. Three chickpea accessions, PI 559361, PI 559363 and W6 22589, showed a high level of resistance to both pathotypes, and can be employed as resistance sources in chickpea breeding programmes for resistance to ascochyta blight.  相似文献   

17.
E. Cakir 《EPPO Bulletin》2007,37(2):309-312
Prediction of potato late blight epidemics, caused by Phytophthora infestans (Mont) de Bary, was studied in three different villages of Bolu Province having large potato growing areas with the Winstel and Ullrich Schrodter models in the years 2002–05. During these years, a late blight outbreak was observed only in 2005 with the disease being less apparent in the other years. The Ullrich Schrodter model was found to poorly predict potato late blight epidemics in 2005. The Winstel model gave first warnings too early but correctly predicted late infections. Both the A1 and A2 mating types were found in Central Anatolia for the first time, in Bolu province.  相似文献   

18.
Studies employing transmission (TEM) and scanning (SEM) electron microscopy revealed that conidiogenous cells of the chickpea blight fungus,Ascochyta rabiei (Pass.) Labr., resembled phialides in most of their features. The phialides were generally of a simple type, but occasionally they proliferated in a percurrent fashion. There is enough evidence to suggest that the fungus is better placed in genusPhoma. SEM has been employed for the first time to study internal details of fructifications of a closed type in coelomycete fungi.  相似文献   

19.
20.
Journal of Plant Diseases and Protection - In July 2020, a blight disease on lemon balm plants was observed with an incidence of up to 10% in three fields in Şanlıurfa province, Turkey....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号