首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Allium organosulfides are potential chemopreventive compounds due to their effectiveness on the induction of phase II detoxification enzyme expression. In this study, we examined the structure and function relationship among various alk(en)yl sulfides on the expression of the pi class of glutathione S-transferase (GSTP) in rat Clone 9 cells, and what mechanism is involved. Cells were treated with 300 μM dipropyl sulfide (DPS), dipropyl disulfide (DPDS), propyl methyl sulfide (PMS), and propyl methyl disulfide (PMDS) for 48 h. DPDS and PMDS displayed more potency on GSTP protein and mRNA induction than that of DPS and PMS. Next, we compared the effectiveness of DPDS, PMDS, and diallyl disulfide (DADS), which have the same number of sulfur atoms but differ in the side alk(en)yl groups. The maximum increases on protein expression, mRNA level, and enzyme activity were noted in cells treated with DADS, followed by DPDS and PMDS. A reporter assay showed that three disulfides increased GSTP enhancer I (GPE I) activity (P < 0.05) in the order DADS > DPDS ≥ PMDS. Electromobility gel shift assays showed that the DNA binding of GPE I to nuclear proteins reached a maximum at 1 to 3 h after alk(en)yl disulfide treatment. Supershift assay revealed that c-jun bound to GPE I. Silencing of extracellular signal-regulated kinase (ERK) 2 expression inhibited c-jun activation and GSTP induction. Results suggest that both the type of alk(en)yl groups and number of sulfur atoms are determining factors of allium organosulfides on inducing GSTP expression, and it is likely related to the ERK-c-Jun-GPE I pathway.  相似文献   

2.
3.
Increasing oxidative stress is intimately involved in the pathogenesis of lung failure. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a key element in redox homeostasis. Nrf2 regulates antioxidant-associated genes that are often the target of phytochemicals in chemoprevention. This study evaluated the effect of diallyl sulfide (DAS), which is present in garlic, on the expression of antioxidant enzymes in the rat lung and the Nrf2 modulation in MRC-5 lung cells. DAS increased the activities of glutathione S-transferase, glutathione reductase, and catalase as well as the GSH/GSSG ratio compared with the lung of untreated control rats (p < 0.05). The pulmonic superoxide dismutase, glutathione peroxidase, NAD(P)H:quinone oxidoreductase 1, and catalase mRNA levels were also significantly increased (p < 0.05) after DAS treatment. Following DAS treatment, DAS level was measured in the plasma after 7 days of oral administration, and the C(max) value was 15 ± 4.2 μM. The total amount of pulmonic Nrf2 and the nuclear translocation of Nrf2 were elevated in DAS-treated rats, clarifying the effect of DAS on the modulation of antioxidant enzymes. Furthermore, DAS could induce nuclear translocation of Nrf2 via ERK/p38 signaling pathway in lung MRC-5 cells. This study demonstrates that DAS administration can significantly induce the activity of antioxidant enzymes in rat lungs and suggests a possible use for DAS as a dietary preventive agent against oxidative stress-induced lung injury.  相似文献   

4.
To investigate whether the regulation of garlic allyl sulfides on biotransformation enzyme expression is tissue-specific, the expression of cytochrome P450 2B1 (CYP 2B1) and the placental form of glutathione S-transferase (PGST) in liver, lung, and intestine, which are the three major organs responsible for drug metabolism, was examined. Rats were orally administrated 0.5 or 2 mmol/kg BW diallyl sulfide (DAS) or 0.5 mmol/kg BW diallyl disulfide (DADS) or diallyl trisulfide (DATS) three times per week for 6 weeks. The final body weights and the body weight ratio of liver and lung were not changed by any of these three allyl sulfide treatments as compared to the control rats. An 11- and 12-fold increase of 7-pentoxyresorufin O-dealkylase (PROD) activities was noted in rats treated with 0.5 or 2 mmol/mg BW DAS, respectively, as compared with the controls (P < 0.05). In contrast, DADS and DATS significantly increased hepatic PGST activity toward ethacrynic acid by 30 and 40%, respectively, as compared with the control rats (P < 0.05). An increase in PGST activity was only noted at 2 mmol/kg BW DAS group (P < 0.05). In addition, similar increases in PGST activity due to DADS and DATS were also noted in lung and jejunum tissue (P < 0.05). Immunoblot assay shows that the changes in CYP 2B1 and PGST proteins due to the three garlic allyl sulfide treatments on liver, lung, and jejunum were consistent with those observed for PROD and PGST activities. Northern blot further revealed that the DADS and DATS increased PGST mRNA levels in both liver (2.9- and 3.0-fold, respectively) and lung (4.1- and 2.6-fold, respectively) and DAS dose-dependently increased CYP 2B1 mRNA levels in the liver. Garlic allyl sulfides differentially induced CYP 2B1 and PGST expression, and this up-regulation of these two biotransformation enzymes is tissue-specific.  相似文献   

5.
6.
Glutathione S-transferases (GSTs) (EC 2.5.1.18) are ubiquitous enzymes that have a defined role in xenobiotic detoxification, but a deeper knowledge of their function in endogenous metabolism is still lacking. In this work, we isolated the cDNAs as well as the genomic clones of orange GSTs. Having considered gene organization and homology data, we suggest that the isolated GST gene is probably involved in the vacuolar import of anthocyanins. We also found that the blood and blond orange GSTs shared the same nucleotide sequences, but as expected, the GST expression in the nonpigmented orange cultivar [Citrus sinensis L. (Osbeck)] (Navel and Ovale) was strongly reduced as compared to that of the pigmented orange (Tarocco). Interestingly, in the crude extracts of pigmented orange fruits, the GST activity was reproducibly detected by providing either 1-chloro-2,4 dinitrobenzene (CDNB) or cyanidin-3-O-glucoside (C-3-G) as substrates; moreover, we have shown that cyanidin-3-O-glucoside acted as a powerful competitive inhibitor of 1-chloro-2,4 dinitrobenzene conjugation to reduced glutathione (GSH) in the pigmented orange, confirming that this molecule might easily bind to the active site of the enzyme and functions as a putative substrate. In addition, we have reported here the successful in vitro expression of orange GST cDNAs leading to a GST enzyme that is active against cyanidin-3-O-glucoside, thus suggesting the probable involvement of the isolated gene in the tagging of anthocyanins for vacuolar import. This last result will help to study the kinetic and structural properties of orange fruit GST avoiding time-consuming protein purification procedures.  相似文献   

7.
Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.  相似文献   

8.
9.
10.
11.
The ozonolysis of aflatoxin B(1) (400 μg/mL) in acetonitrile solution was conducted with an ozone concentration of 6.28 mg/L at the flow rate of 60 mL/min for different times. The results showed that ozone was an effective detoxification agent because of its powerful oxidative role. Thin-layer chromatography and liquid chromatography-quadrupole time-of-flight mass spectra were applied to confirm and identify the ozonolysis products of aflatoxin B(1). A total of 13 products were identified, and 6 of them were main products. The structural identification of these products provided effective information for understanding the ozonolysis pathway of aflatoxin B(1). Two ozonolysis pathways were proposed on the basis of the accurate mass and molecular formulas of these product ions. Nine ozonolysis products came from the first oxidative pathway based on the Criegee mechanism, and the other four products were produced from the second pathway based on the oxidative and electrophilic reactions of ozone. According to the toxicity mechanism of aflatoxin B(1) to animals, the toxicity of aflatoxin B(1) was significantly reduced because of the disappearance of the double bond on the terminal furan ring or the lactone moiety on the benzene ring.  相似文献   

12.
13.
Fomesafen is a diphenyl ether herbicide used to control the growth of broadleaf weeds in bean fields. Although the degradation of fomesafen in soils was thought to occur primarily by microbial activity, little was known about the kinetic and metabolic behaviors of this herbicide. This paper reported the capability of the newly isolated strain Pseudomonas zeshuii BY-1 to use fomesafen as the sole source of carbon in pure culture for its growth. Up to 88.7% of 50 mg of L(-1) fomesafen was degraded by this bacterium in mineral medium within 3 days. Strain BY-1 could also degrade other diphenyl ethers, including lactofen, acifluorfen, and fluoroglycofen. During the fomesafen degradation, five metabolites were detected and identified by liquid chromatography-mass spectrometry and tandem mass spectrometry. The primary degradation pathway of fomesafen might be the reduction of the nitro group to an amino group, followed by the acetylation of the amino derivative, dechlorination, and cleavage of the S-N bond. The addition of the BY-1 stain into soils treated with fomesafen resulted in a higher degradation rate than that observed in uninoculated soils, and the bacteria community in contaminated soil recovered after inoculation of the BY-1 stain. On the basis of these results, strain P. zeshuii BY-1 has the potential to be used in the bioremediation of fomesafen-contaminated soils.  相似文献   

14.
15.
A neonicotinoid insecticide thiacloprid-degrading bacterium strain J1 was isolated from soil and identified as Variovorax boronicumulans by 16S rRNA gene sequence analysis. Liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis indicated the major pathway of thiacloprid (THI) metabolism by V. boronicumulans J1 involved hydrolysis of the N-cyanoimino group to form an N-carbamoylinino group containing metabolite, THI amide. Resting cells of V. boronicumulans J1 degraded 62.5% of the thiacloprid at a concentration of 200 mg/L in 60 h, and 98% of the reduced thiacloprid was converted to the final metabolite thiacloprid amide. A 2.6 kb gene cluster from V. boronicumulans J1 that includes the full length of the nitrile hydratase gene was cloned and investigated by degenerate primer polymerase chain reaction (PCR) and inverse PCR. The nitrile hydratase gene has a length of 1304 bp and codes a cobalt-type nitrile hydratase with an α-subunit of 213 amino acids and a β-subunit of 221 amino acids. The nitrile hydratase gene was recombined into plasmid pET28a and overexpressed in Escherichia coli BL21 (DE3). The resting cells of recombinant E. coli BL21 (DE3)-pET28a-NHase with overexpression of nitrile hydratase transformed thiacloprid to its amide metabolite, whereas resting cells of the control E. coli BL21 (DE3)-pET28a did not. Therefore, the major hydration pathway of thiacloprid is mediated by nitrile hydratase.  相似文献   

16.
Alpha-amylases (EC 3.2.1.1) are glycosyl hydrolases with endoglycolytic activity on the alpha-1,4-d-glucosidic linkages in starch. In bananas, the mobilization of starch accounts for sugar accumulation during ripening, and among several hydrolytic enzymes, alpha-amylase is the only enzyme argued to be able to attack the intact granules, indicating a pivotal role for this enzyme. A 1953 bp full-length banana alpha-amylase cDNA (MAmy), encoded for a sequence of 416 amino acids, was cloned and used for heterologous expression in Pichia pastoris. The cloned MAmy presented the highly conserved motifs common to alpha-amylases, and the amylolytic activity of the extracts from yeast transformed with MAmy demonstrated that it encodes for a functional alpha-amylase, suggesting a putative role for this gene in starch degradation during fruit ripening.  相似文献   

17.
18.
为了研究番茄幼苗在缺磷胁迫下根系形态发育与生长素、生长素信号转导途径中的转录因子NAC1,以及调控NAC1 表达的上游miR164之间的关系。试验以5和500 μmol/L磷浓度作为缺磷胁迫和对照,检测了外源生长素NAA(1-naphthalene acetic acid)及生长素抑制剂NPA(N-1-naphthylphthalamic acid)对侧根形成的影响; 同时采用RT-PCR检测了NAC1和miR164在缺磷胁迫下的时序表达。结果表明,缺磷胁迫下侧根大量形成与生长素及其运输密切相关,在侧根迅速形成的24 h内,NAC1的表达在缺磷胁迫下增强; 而其上游的miR164表达降低,从而揭示了缺磷胁迫下侧根形成与miR164调节NAC1表达之间的关系。  相似文献   

19.
Ultraviolet (UV) radiation can cause inflammatory changes and may further contribute to skin carcinogenesis. Anthocyanins are known to be powerful antioxidants that help protect plants from UV damage. Recently, we isolated anthocyanins from black soybean [Glycine max (L.) Merr] seed coats. Thus, we investigated the protective effect of anthocyanins from black soybean seed coats on UVB radiation-induced inflammatory responses and the molecular mechanism responsible for regulation of apoptosis and inflammatory responses. Anthocyanins inhibited UVB-induced cylooxygenase-2 (COX-2) and PGE 2 production through a nuclear factor-kappaB-dependent pathway and regulation of the PI3 kinase/Akt pathway activated by UVB in a human keratinocyte cell line, HaCaT. Topical application of anthocyanins prior to UVB irradiation of hairless mice also inhibited induction of COX-2 and PGE 2. In conclusion, it is suggested that anthocyanins from the seed coat of black soybeans can be used as a useful drug to modulate oxidative disorders including UVB-induced inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号