首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Asian cultivated rice Oryza sativa L. was domesticated from its wild ancestor, O. rufipogon. During domestication, the cultivated rice lost its seed-shattering behaviour. Previous studies have shown that two major quantitative trait loci (QTLs; qSH1 and sh4) are responsible for the seed-shattering degree. Here, we produced introgression lines carrying non-functional alleles from O. sativa ‘Nipponbare’ at the two major QTLs in the genetic background of wild rice O. rufipogon W630, and examined the effects of the two QTLs on seed shattering and abscission layer formation. The introgression lines, with Nipponbare alleles at either or both loci, showed complete or partial abscission layer formation, respectively, indicating that other unknown loci might be involved in enhancing seed shattering in wild rice. We detected a single QTL named qSH3 regulating seed-shattering degree using an F2 population between Nipponbare and the introgression line carrying Nipponbare alleles at the two QTLs. Although we generated an introgression line for qSH3 alone, no effects on seed shattering were observed. However, a significant effect on seed-shattering degree was observed for the introgression line carrying Nipponbare alleles at qSH3 and the two QTLs, suggesting an important role of qSH3 on seed shattering in coordination with the two QTLs.  相似文献   

2.
The wild relatives of rice (Oryza sativa L.) are useful sources of alleles that have evolved to adapt in diverse environments around the world. Oryza rufipogon, the known progenitor of the cultivated rice, harbors genes that have been lost in cultivated varieties through domestication or evolution. This makes O. rufipogon an ideal source of value-added traits that can be utilized to improve the existing rice cultivars. To explore the potential of the rice progenitor as a genetic resource for improving O. sativa, 33 chromosome segment substitution lines (CSSLs) of O. rufipogon (W0106) in the background of the elite japonica cultivar Koshihikari were developed and evaluated for several agronomic traits. Over 90% of the entire genome was introgressed from the donor parent into the CSSLs. A total of 99 putative QTLs were detected, of which 15 were identified as major effective QTLs that have significantly large effects on the traits examined. Among the 15 major effective QTLs, a QTL on chromosome 10 showed a remarkable positive effect on the number of grains per panicle. Comparison of the putative QTLs identified in this study and previous studies indicated a wide genetic diversity between O. rufipogon accessions.  相似文献   

3.
Anther and stigma size are critical floral traits that influence outcrossing in rice (Oryza sativa), a crop that is predominantly self-fertilizing. The efficiency of hybrid rice seed production depends on efficient outcrossing ability of parental lines, which is promoted by increased anther and stigma size. Phenotypic correlations between anther and stigma traits have been observed in many studies; however, evidence for this relationship is unclear and the genetic basis remains to be elucidated. To examine this relationship and to identify quantitative trait loci (QTLs) for increased anther and stigma size, we developed two advanced backcross QTL mapping populations derived from a cross between a Thai elite indica crop variety (SPR1) and an accession of common wild rice (O. rufipogon Griff.), which is predominantly outcrossing. One mapping population was selected for increased anther size while the other was selected for increased stigma size. We mapped QTLs for anther size and stigma size in both populations. Bulked segregant analysis was used to identify molecular markers associated with the selected traits. A total of 16 significant QTLs associated with anther and stigma traits were identified across the two populations, and these were located in five genomic regions on four chromosomes. Whereas three of these regions have been previously reported, two of them are newly identified and should be further explored for improving outcrossing ability in rice. The co-localization of QTL for anther and stigma traits strongly suggests some degree of shared developmental basis for these traits.  相似文献   

4.
A total of 448 samples in five natural populations of wild rice (Oryza rufipogon) were collected in Cambodia. They were examined using 12 SSR and two chloroplast markers to evaluate the degree of variation among populations and the genetic structure within populations. In the two annual populations, the number of plants with homozygous alleles at all 12 SSR loci were high (66.3% and 79.5%), suggesting that these plants propagate mainly through self-pollination. In the three perennial populations, no individuals had all homozygous genotypes, but redundant genotypes resulted from clonal propagation were observed. Percentages of the redundant genotypes were highly varied (3.6%, 29.2% and 86.0%). This may be due to the different stable levels of environmental conditions. As for chloroplast genome, most of the wild plants showed the same chloroplast types as most Indica-type cultivars have. However, plants with different chloroplast types were maintained, even in the same population. In tropical Asian countries, many wild rice populations were observed under similar ecological conditions examined in this study. Therefore, the present results concerning population structure will be important to further elucidate genetic features of wild rice, and will also give strong clues to utilize and conserve wild natural genetic resources.  相似文献   

5.
Wild relatives genetically close to cultivars are precious genetic resources for plant breeding. Oryza rufipogon, O. barthii, O. glumaepatula, O. meridionalis and O. longistaminata are such wild species, and are also categorized as AA genome species based on their structural similarities. Chromosome segment substitution lines (CSSLs) are a powerful resource in breeding and genetics, and numerous rice CSSLs have been produced. This study aimed to develop DNA markers for evaluation of CSSLs directly by PCR and subsequent gel electrophoresis. We confirmed that up to 155 of 188 markers developed for detection of japonica-indica INDELs could also detect INDELs between rice cultivars and wild AA-species accessions. Percentages of applicable markers were higher in O. rufipogon accessions (61.7 to 85.6%), and lower in accessions of other four AA species (39.8 to 51.4%). These markers were distributed throughout the rice chromosomes, and will be useful for genotyping of CSSLs and other genetic resources derived from crosses between rice cultivars and closely related wild species.  相似文献   

6.
Anther culture of an interspecific rice hybrid from a cross of Oryza sativa× O. rufipogon was attempted. Of the 117 regenerated pollen clones, 56 could survive to maturity. A majority of these were either haploids or doubled haploids and very few turned out to be chromosomal variants. Comparative study of doubled haploids and the seed derived F2 plants indicate the distinct advantages of anther culture techniques. (1) Androgenic plants, though few in number, showed greater ariation for all the traits with the exception of ear bearing tillers. (2) Predominance of recombinants with wild traits was observed in F2 segregation. (3) It was possible to recover indica type recombinants among the anther-derived plants with one or two traits introgressed from O. rufipogon. These results suggest the feasibility and utility of anther culture in distant hybridization for incorporation of alien variation into cultivated rice.  相似文献   

7.
Low phosphorus availability is a major factor limiting rice productivity. In this study, a population of backcross recombinant inbred lines (BILs) derived from an inter-specific cross (Oryza sativa L. × O. rufipogon Griff.) was used for genetic linkage map construction and quantitative trait locus (QTL) mapping. The results showed that a linkage map consisting of 153 markers was constructed. Twenty-one out of 231 BILs were tolerant of low-phosphorus according to the index to P-deficiency tolerance. Twenty-three QTLs on chromosomes 1, 2, 3, 7, 8, 9 and 11 were detected, of which eight QTLs showed high (22.93–37.32%) contribution to phenotypic variation. In addition, most of QTLs in this study (18 out of 23 QTLs) were located and overlapped on the chromosome 1, 3 and 11, which individually explained 6.07–34.70% phenotypic variation, indicating that there might be multiple main effect QTLs related to P-deficiency tolerance in O. rufipogon, and these QTLs might cluster in the same region. These results would provide helpful information for cloning and utilizing the P-deficiency tolerance-responsive genes from O. rufipogon.  相似文献   

8.
Oryza rufipogon (IRGC105491) is a wild relative of cultivated rice, it contains two favorable yield-enhancing genes (yld1.1 and yld2.1) on chromosomes 1 and 2, respectively, which are capable of improving the yield of hybrid rice by 18 and 17%, respectively. SSR markers RM9, RM24, RM5 and RM306 are flanking yld1.1, while RM166 and RM208 are mapped in the close region to yld2.1. These molecular markers tightly linked to the two yield-enhancing genes were used to screen the plants of backcross population between 9311 (one of the top-performing parental lines in super hybrid rice seed production in China) and O. rufipogon. The results were as follows: (1) in BC2F1 population, the percentage of the individuals which contain both of the O. rufipogon alleles at marker loci RM166 and RM9 was 16.8%; (2) 1.5% individuals of total BC3F1 population have all the six linked markers (RM166, RM9, RM5, RM208, RM24, RM306); (3) in BC4F1 population, the percentage of the individuals which contain both of the two O. rufipogon alleles at marker loci RM166 and RM9 was 18.0%. Based on marker genotypes, the individuals, that contain multiple O. rufipogon markers, were selected and used for further backcross and self cross. Many 9311-type lines with yield-enhancing genes and high yield potential were obtained. After three times self-crossing a stable improved 9311 line was obtained. The results indicated that these molecular markers are feasible for marker-assisted selection (MAS) to screen rice individuals with high yield potential.  相似文献   

9.
The nearly isogenic nature of the introgression lines (ILs) provides a relative advantage over other segregating populations in the rapid implementation of pyramiding approach through crosses and marker analysis. A set of 126 ILs carrying various introgressed segments from a presumed wild progenitor, Oryza rufipogon Griff. Acc. W1944 in the background of an elite Korea japonica cultivar (O. sativa L.), Hwayeongbyeo, was constructed using the marker assisted selection (MAS) technique combined with repeated backcrosses. The 126 ILs have different W1944 segments on each chromosome, with 100% coverage of wild segments on chromosome 1, while for chromosome 10, the coverage was only 33.3%. The mean number of homozygous and heterozygous donor segments were 3 (ranging from 0 to 7) and 4.7 (ranging from 1 to 14.5), respectively, and 31.6% of introgressed segments had sizes of less than 10.5 cM. A total of 41 quantitative trait loci (QTLs) and two loci associated with pericarp coloration were identified. The number of QTLs per trait ranged from 2 to 6. Phenotypic variance associated with each QTL varied from 9.1 to 52.2%, with an average of 17.1%. For 11 (26.8%) of the QTLs detected in this study, the O. rufipogon-derived alleles contributed the desired agronomic effect despite the overall inferior characteristics of the wild phenotype. Favorable alleles from the O. rufipogon accession were identified for panicle number, panicle length, days to heading, secondary branches, spikelets per panicle, and 1,000-grain weight.  相似文献   

10.
Modern rice varieties that ushered in the green revolution brought about dramatic increase in rice production worldwide but at the cost of genetic diversity at the farmers’ fields. The wild species germplasm can be used for broadening the genetic base and improving productivity. Mining of alleles at productivity QTL from related wild species under simultaneous backcrossing and evaluation, accompanied by molecular marker analysis has emerged as an effective plant breeding strategy for utilization of wild species germplasm. In the present study, a limited backcross strategy was used to introgress QTL associated with yield and yield components from Oryza rufipogon (acc. IRGC 105491) to cultivated rice, O. sativa cv IR64. A set of 12 BC2F6 progenies, selected from among more than 100 BC2F5 progenies were evaluated for yield and yield components. For plant height, days to 50% flowering and tillers/plant, the introgression lines did not show any significant change compared to the recurrent parent IR64. For yield, 9 of the 12 introgression lines showed significantly higher yield (19–38%) than the recurrent parent IR64. Four of these lines originating from a common lineage showed higher yield due to increase in grain weight and another three also from a common lineage showed yield increase due to increase in grain number per panicle. For analyzing the introgression at molecular level all the 12 lines were analyzed for 259 polymorphic SSR markers. Of the total 259 SSR markers analyzed, only 18 (7.0%) showed introgression from O. rufipogon for chromosomes 1, 2, 3, 5, 6 and 11. Graphical genotypes have been prepared for each line and association between the introgression regions and the traits that increased yield is reported. Based on marker trait association it appears that some of the QTL are stable across the environments and genetic backgrounds and can be exploited universally.  相似文献   

11.
在分离克隆抗白叶枯病基因Xa23研究中获得大量转基因水稻材料。为了系统研究转Xa23基因水稻的抗病稳定性和遗传模式, 本文通过逐株进行抗白叶枯病接种鉴定、PCR和Southern blot分子检测, 对一批转Xa23基因水稻植株进行了T0代到T2代的跟踪分析。结果表明, Xa23基因的整合和表达, 使感病受体品种牡丹江8号获得抗病性。由于Xa23基因插入受体基因组的位点不同, 同是单拷贝插入的转基因T0代抗病植株, 其抗病程度有明显差异。T0代植株的抗病程度, 可以准确、稳定地遗传到T1代和T2代。单拷贝转基因植株分离群体的抗感植株分离比接近3∶1, 表明转Xa23基因遵循孟德尔单基因遗传模式。已获得2个纯合的单拷贝转基因抗病株系, 它们的抗病程度稍有差别, 将用于外源基因插入位置效应分析和杂交稻抗病育种。  相似文献   

12.
Accessions of Asian wild rice, Oryza rufipogonGriff., vary in phenology, growth habit, reproductivesystem, panicle architecture and rachis branchnumbers, and in habitat preferences. In this paper 86accessions of annual, perennial and intermediategrowth habit variants have been examined for variationin the numbers of rachis branches in the panicle andvascular bundles in their subtending peduncles.Accessions of annual habit, which regenerate from seedand are adapted to shallow and temporary swamps,developed fewer rachis branches (mean = 6.0) thanthose of perennial habit (mean = 7.2) which largelyregenerate vegetatively and are adapted to stable deepwater habits. In both cases variation within growthhabit groupings was narrow. Variation in vascularbundle numbers, which has not been previouslyreported, was similar (10.1 to 10.3), but morevariable within annuals. As a result the V/R ratio (ofvascular bundles: rachis branches) was higher inannuals (mean = 1.71) than among perennials (mean =1.46). Accessions of annual habit, and adaptedto a wide range of habitats, varied considerably inboth rachis branch (mean = 9.5) and vascular bundlenumbers (mean = 14.0), with V/R ratios similar tothose of perennial growth habit (mean = 1.49).Corresponding measures for both indica and japonica of cultivated rice (O. sativa) variednarrowly and were substantially greater for bothrachis branches (mean = 11.6 and 13.8, respectively)and vascular bundles (mean = 19.1 and 14.8,respectively), with V/R ratios of 1.67 for indica and similar to accessions of O.rufipogon of annual habit, and 1.07 for japonica and lower than accessions of O.rufipogon of both perennial and intermediate habit.Accessions of O. rufipogon from the India andIndochina regions were significantly lower in rachisbranch, but not vascular bundle numbers thanaccessions from China; with the V/R ratio higher amongaccessions from India than found in other geographicregions of origin. The possible role of O.rufipogon accessions of intermediate growth habit inthe evolution of cultivated rice is discussed,although it is speculated that accessions ofintermediate habit with high numbers of rachisbranches and vascular bundles may have resulted frominterspecific hybridization with O. sativacultivars.  相似文献   

13.
An advanced backcross line, HR9118, was produced from a single plant of BC2F3 families derived from a cross between Oryza rufipogon Griff. (IRGC 105491) as a donor parent and the O. sativa subsp. japonica cv. Hwaseongbyeo as a recurrent parent. Although HR9118 resembled Hwaseongbyeo, several traits were different from those of Hwasoengbyeo, including days to heading, plant height, and awn. These differences between Hwasongbyeo and HR9118 could be attributed to introgressed O. rufipogon chromosome segments into HR9118. Introgression analysis using 460 SSR markers revealed that three O. rufipogon-specific chromosome segments were detected in HR9118 genome. F2:3 populations derived from the cross between Hwaseongbyo and HR9118, consisting of 340 F2 plants and 137 F3 lines, were used to map and characterize QTLs for 12 traits. QTL analysis identified a total of 17 QTLs in the F2:3 populations. Of these, seven QTLs were shared by the F2 and F3 populations, whereas the other ten QTLs were identified only in the F3 population. In seven (41.2%) QTLs identified in this study, the O. rufipogon-derived alleles contributed desirable agronomic effects despite the overall undesirable characteristics of the wild phenotype. Each of three O. rufipogon introgressed segments contained multiple QTLs, indicating linkage and/or pleotropic effects. A cluster of eight QTLs was detected on chromosome 8 including a major QTL for awn. Substitution mapping using F2 population indicated that awn8 was located within an interval between two SSR makers RM23326 and RM23356 which are 590 kb apart. SSR markers tightly linked to QTLs for yield components detected in this study will facilitate cloning of the gene underlying this QTL as well as marker-assisted selection for variation in grain weight in an applied breeding program.  相似文献   

14.
Cold tolerance at the early growth stage in wild and cultivated rice   总被引:1,自引:0,他引:1  
The present study was conducted to understand the pattern of variation and the genetic bases for cold tolerance at the early growth stage in Asian rice. The genetic variation was investigated at the germination, plumule and seedling stages among 57 strains including cultivated rice (Oryza sativa ssp. indica and ssp. japonica) and its wild progenitor (Oryza rufipogon). The significant differentiation of cold tolerance was observed among the taxonomically divided groups. At the germination stage, both indica and japonica subspecies tended to be more tolerant than O. rufipogon, whereas at the plumule and seedling stages, ssp. japonica tended to be more tolerant than ssp. indica and O. rufipogon. Furthermore, in cold tolerance at the plumule stage, the clinal variation across the latitude of origins was observed within O. rufipogon and ssp. japonica, suggesting that the current pattern of variation seems to have been shaped by both their phylogenetic histories and on-going adaptation to the local environments. QTL analysis between O. sativa ssp. japonica (tolerant) and O. rufipogon (susceptible) revealed five putative QTLs for cold tolerance at the plumule and seedling stages but not at the germination stage. Substitution mapping was also carried out to precisely locate the two major QTLs for cold tolerance at the plumule stage, which could be used for improvement of tolerance to cold stress in ssp. indica.  相似文献   

15.
Chlorophyll content is one of the most important traits controlling crop biomass and economic yield in rice. Here, we isolated a spontaneous rice mutant named thermo-sensitive chlorophyll deficit 1 (tscd1) derived from a backcross recombinant inbred line population. tscd1 plants grown normally from the seedling to tiller stages showed yellow leaves with reduced chlorophyll content, but showed no significant differences after the booting stage. At temperatures below 22°C, the tscd1 mutant showed the most obvious yellowish phenotype. With increasing temperature, the yellowish leaves gradually turned green and approached a normal wild type color. Wild type and tscd1 mutant plants had obviously different chloroplast structures and photosynthetic pigment precursor contents, which resulted in underdevelopment of chloroplasts and a yellowish phenotype in tscd1. Genetic analysis indicated that the mutant character was controlled by a recessive nuclear gene. Through map-based cloning, we located the tscd1 gene in a 34.95 kb region on the long arm of chromosome 2, containing two BAC clones and eight predicted candidate genes. Further characterization of the tscd1 gene is underway. Because it has a chlorophyll deficit phenotype before the tiller stage and little influence on growth vigor, it may play a role in ensuring the purity of hybrids.  相似文献   

16.
S.-J. Lee    C.-S. Oh    J.-P. Suh    S. R. McCouch  S.-N. Ahn 《Plant Breeding》2005,124(3):209-219
Asian cultivated rice was domesticated from the wild rice, Oryza rufipogon and throughout the domestication process, a wide range of morphological and physiological changes altered the ancestral form. This study was conducted to identify the genetic basis of changes associated with the domestication process. An recombinant Inbred line (RIL) population consisting of 120 lines was developed from a cross between the Juponica cultivar.‘Hwayeongbyeo’and a presumed wild progenitor. O. rufipogon Griff. Acc.01944. The population was genotyped with 124 simple sequence length repeat (SSR) markers, providing an average interval size of 15 cM, and also evaluated for 20 traits related to domestication and agricultural performance. A total of 63 quantitative trait locus (QTLs) and one locus associated with qualitative variation for pericarp coloration were identified using single point and composite interval analysis. The number of QTLs per trait ranged from one to seven. Phenotypic variation associated with each QTL ranged from 3.7 to 40.4%. with an average of 15.3%. The results indicated that most domestication‐related traits clustered in chromosomal blocks, and the positions of many of these clusters were consistent with those reported in previous studies and with skewed segregation ratios in these BC1,F7 RILs. For 13 (20.6%) of the QTLs identified in this study. the O. rufipogan ‐derived allele contributed a desirable agronomic effect despite the overall undesirable characteristics of the wild phenotype. Favourable alleles from O. rufipogan were detected for panicle length, spikelets per panicle, days to heading and leaf discoloration associated with cold stress. When compared with previous studies involving interspecific crosses, it can be concluded that O. rufipogon is useful as a source of valuable alleles for rice improvement and that many of the introgressed regions contain genes that have a favourable impact on phenotype in different genetic backgrounds and different environments.  相似文献   

17.
Hybrid incompatibility plays an important role in establishment of post-zygotic reproductive isolation. To unveil genetic basis of hybrid incompatibilities between diverged species of genus Oryza AA genome species, we conducted genetic dissection of hybrid sterility loci, S22(t), which had been identified in backcross progeny derived from Oryza sativa ssp. japonica (recurrent parent) and South American wild rice O. glumaepatula near the end of the short arm of chromosome 2. The S22(t) region was found to be composed of two loci, designated S22A and S22B, that independently induce F1 pollen sterility. Pollen grains containing either of the sterile alleles (S22A-glums or S22B-glums) were sterile if produced on a heterozygous plant. No transmission of the S22A-glums allele via pollen was observed, whereas a low frequency of transmission of S22B-glums was observed. Cytological analysis showed that the sterile pollen grains caused by S22A could reach the bicellular or tricellular stage, and the nearly-sterile pollen grains caused by S22B could reach the tricellular stage. Our genetic analysis showed repulsion linkage effect is possible to induce strong reproductive barrier by high pollen sterility based on recombination value and transmission ratio of hybrid sterility gene to the progeny was influenced by frequency of competitors on fertilization.  相似文献   

18.
Hybrid sterility hinders the transfer of useful traits between Oryza sativa and O. glaberrima. In order to further understand the nature of interspecific hybrid sterility between these two species, a strategy of multi-donors was used to elucidate the range of interspecific hybrid sterility in this study. Fifty-nine accessions of O. glaberrima were used as female parents for hybridization with japonica cultivar Dianjingyou 1, after several backcrossings using Dianjingyou 1 as the recurrent parent and 135 BC6F1 sterile plants were selected for genotyping and deducing hybrid sterility QTLs. BC6F1 plants containing heterozygous target markers were selected and used to raise BC7F1 mapping populations for QTL confirmation and as a result, one locus for gamete elimination on chromosome 1 and two loci for pollen sterility on chromosome 4 and 12, which were distinguished from previous reports, were confirmed and designated as S37(t), S38(t) and S39(t), respectively. These results will be valuable for understanding the range of interspecific hybrid sterility, cloning these genes and improving rice breeding through gene introgression.  相似文献   

19.
Summary It is shown that the restorer gene Rf j extracted from the Japanese rice variety Akebono is effective on pollen restoration in the cytoplasm substitution line having the nucleus of Oryza glaberrima and japonica or indica cytoplasm of O. sativa, and is of the sporophytic type.The Asian perennial type of the wild rice species O. rufipogon is considered to be the progenitor of O. sativa. Two substitution lines having the cytoplasm of a perennial strain of O. rufipogon from Sri Lanka and the nucleus of O. glaberrima with or without the gene Rf j in homozygous condition have been bred by means of successive backcrosses. These lines have now reached the BC5 generation. Plants of the lines resemble morphologically the recurrent parent, but do not show pollen restoration, indicating that the cytoplasm of the rufipogon strain induced male sterility and that the gene Rf j does not act as the restorer.  相似文献   

20.
Transgenic photo-thermo sensitive genic male sterility Oryza sativa L. cv. “261S” plants with the anti-Waxy gene were successfully obtained using an Agrobacterium tumefaciens-mediated co-transformation method. Marker-free homozygous transgenic lines with the anti-Waxy gene were obtained. The setting seed rates of the transgenic plants via self-pollination or via crossing with the restorer line WX99075 rice and the 1000-grain weight of the transgenic plants and the F2 hybrid seeds obtained by crossing the transgenic or non-transgenic plants with the restorer line WX99075 rice, and the number of panicles of the transgenic plants and yields of the F2 hybrid rice, were analysed. Quality indexes of the transgenic plants and of the F2 hybrid seeds were analysed. Our researches results indicate that hybrid female and hybrid descendant edibility could be improved via the introduction of the anti-Waxy gene, but the grain yields of the reserve seeds via self-pollination of the transgenic photo-thermo sensitive genic sterile lines and of the hybrid rice were not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号