首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological soil crusts (BSCs) are important in many arid and semiarid ecosystems for their abilities to fix atmospheric nitrogen (N) and stabilize surface soil. Grazing disturbance has a profound influence on abundance, species composition, and ecological functioning of BSCs. To elucidate the effects of grazing on BSCs in Inner Mongolia grasslands, an investigation was conducted in a typical steppe that had previously been subjected to long-term grazing with six grazing densities (control: 0 sheep · ha?1, very light: 4 sheep ·ha?1, light: 8 sheep · ha?1, medium: 12 sheep · ha?1, heavy: 16 sheep · ha?1, and very heavy: 20 sheep · ha?1). Cover, species composition, potential N-fixing activity, and potential N input of BSC indicate that long-term grazing significantly reduced the importance of BSC in N input and soil stabilization. Such reductions were highly related to grazing density. Very light grazing had no significant effect on the role of BSC in soil stabilization, but resulted in a 13.3% reduction in BSC N input potential. Heavy and very heavy grazing led to a decrease of potential N input by one order of magnitude, and a decline of BSC function via a shift from high coverage of an attached group–dominated BSC community to a low coverage of a vagrant group–dominated community. Constraining grazing level to a very light density—and to a lesser extent, a light grazing density—is likely a preferred practice for conserving BSC and the ecological services it provides in N fixation and soil stabilization.  相似文献   

2.
A field study in Randall County, Texas, was conducted to determine how soil bulk density and plant cover change over time in response to deferment following a high-density, high-intensity, short-term grazing/trampling event. Green Sprangletop (Leptocloa dubia Kunth.) and Kleingrass (Panicum coloratum L.) were broadcasted at 4.5 kg ha−1 pure live seed (PLS) on former cropland that had a partial stand of WW-Spar Bluestem (Bothriochloa ischaemum L.). A high-density, high-intensity trampling event was achieved with twenty-four 408-kg Bos taurus heifers occupying four 0.10-ha plots (97 920 kg live weight ha−1) for 10 h, with four adjacent 0.10-ha control plots left untrampled. Canopy and basal cover were determined by plant functional group using the Daubenmire method after rainfall events of > 0.254 cm, and a 5.08 × 7.62 cm core was collected to determine soil bulk density. Strips of supplemental plant material were applied in March to test the effects of 100% soil cover on seedling recruitment. Trampled treatments had 30% less vegetative cover (P < 0.01) and average soil bulk densities that were 0.20 g cm³ higher (P < 0.01) than untrampled plots post trampling. Bulk density decreased with deferral until there were no significant differences between treatments (240 d). However, WW-Spar basal cover increased in both treatments, with no differences between treatments. Trampling did not affect seedling recruitment, but supplemental cover increased seedling density on three of five subsequent sampling dates (P < 0.05). Canopy cover of warm season perennial grasses in trampled treatments surpassed that of the untrampled treatments during the early growing season of 2016 (P < 0.01) but were no different after mid-June. Hydrologic function can be maintained with high stock densities by providing adequate deferment to reestablish sufficient cover and allow natural processes to restore porosity.  相似文献   

3.
Questions have been raised about whether herbaceous productivity declines linearly with grazing or whether low levels of grazing can increase productivity. This paper reports the response of forage production to cattle grazing on prairie dominated by Kentucky bluegrass (Poa pratensis L.) in south-central North Dakota through the growing season at 5 grazing intensities: no grazing, light grazing (1.3 ±  animal unit months [AUM] · ha-1), moderate grazing (2.7 ±  AUM · ha-1), heavy grazing (4.4 ±  AUM · ha-1), and extreme grazing (6.9 ±  AUM · ha-1; mean ± SD). Annual herbage production data were collected on silty and overflow range sites from 1989 to 2005. Precipitation and sod temperature were used as covariates in the analysis. On silty range sites, the light treatment produced the most herbage (3 410 kg · ha-1), and production was reduced as the grazing intensity increased. Average total production for the season was 545 kg · ha-1 less on the ungrazed treatment and 909 kg · ha-1 less on the extreme treatment than on the light treatment. On overflow range sites, there were no significant differences between the light (4 131 kg · ha-1), moderate (4 360 kg · ha-1), and heavy treatments (4 362 kg · ha-1; P &spigt; 0.05). Total production on overflow range sites interacted with precipitation, and production on the grazed treatments was greater than on the ungrazed treatment when precipitation (from the end of the growing season in the previous year to the end of the grazing season in the current year) was greater than 267.0, 248.4, 262.4, or 531.5 mm on the light, moderate, heavy, and extreme treatments, respectively. However, production on the extreme treatment was less than on the ungrazed treatment if precipitation was less than 315.2 mm. We conclude that low to moderate levels of grazing can increase production over no grazing, but that the level of grazing that maximizes production depends upon the growing conditions of the current year.  相似文献   

4.
Arbuscular mycorrhizal fungi (AMF) are vital for maintaining ecosystem structure and functioning and can be affected by complex interactions between plants and herbivores. Information found in the literature about how ungulate grazing affects AMF is in general contradictory but might be caused by differences in grazing intensities (GIs) among studies. Hence we studied how different GIs affect the composition, diversity, and abundance of AMF communities in a semiarid steppe of Patagonia. We predicted that 1) total AMF spore abundance (TSA) and diversity would decrease only under intense-grazing levels and 2) AMF species spore abundance would depend on their life-history strategies and on the GI. To test our predictions, we compared AMF communities among nongrazed (NG), moderately grazed (MG, 0.1–0.3 sheep ha1), and intensely grazed sites (IG, > 0.3 sheep ha1). GI was the most important factor driving changes in TSA and diversity, regardless of host plant identity. TSA, diversity, and evenness significantly decreased in IG sites but were not affected by MG. AMF species spore abundance varied depending on their life-history strategies and GI. Families with high growth rates like Glomeraceae and probably Pacisporaceae showed the highest spore abundance in all sites but decreased under IG. Species with higher carbon demands like Gigasporaceae showed low spore abundance and frequency in NG and MG sites and were absent in IG sites. In contrast, species with low growth rates, but efficient carbon usage, like Acaulosporaceae, showed low spore abundance in all sites but increased in IG sites compared with NG or MG sites. We conclude that intensification of grazing reduces AMF diversity and abundance, with the likely loss of AMF benefits for plants, such as improved nutrient and water uptake and soil aggregation. Therefore, sustainable grazing systems should be designed to improve or restore AMF communities, particularly in degraded rangelands, like the Patagonian steppes.  相似文献   

5.
放牧强度对浑善达克沙地土壤物理性质的影响   总被引:10,自引:4,他引:10  
研究了3种放牧强度对沙丘和低地利用单元土壤性质的影响。结果表明:随着放牧强度的增强,低地和沙丘利用单元,粘粒含量下降,砂粒含量增加,土壤颗粒变粗,容重变大,总孔隙度下降;低地利用单元土壤变紧,0~5cm及5~10cm土层含水量下降;阳坡和阴坡紧实度下降,0~5cm土层含水量下降,5~10cm含水量增加。  相似文献   

6.
Agricultural operations, including horse farms, can contribute nonpoint source (NPS) pollution to surface water. The use of best management practices (BMPs) is the most effective way to prevent the movement of pollutants to surface water from nonpoint source pollution. Previous mailed survey studies have assessed the use of BMPs at the county and state level, but a visual assessment of horse farms is necessary to validate survey results. An observational field study was conducted to assess BMP use and soil and pasture quality and to create a model to predict soil erosion on Maryland horse farms. Fifty-one farms were selected based on stocking density (acres per horse [ac horse-1]), farm use, and presence of water on property. All farms were visited from September through November 2009. In each pasture with grazing horses, the correct use of BMPs was assessed, grass height and vegetative cover were measured, and composite soil samples were collected. Less than half of the 18 assessed BMPs were being used by participants. Although most participants maintained the recommended vegetative cover and grass height, soil erosion was a major problem in pastures. Most farms had optimum soil nutrient concentrations (Ca, K, and P), excessive Mg values, and basic soil pH. Vegetative cover and grass height measurements were positively correlated with stocking density (r = 0.345, P < .0001; and r = 0.291, P < .0001, respectively). Farm use was the only variable that predicted soil erosion on farms (P = .006). Farms used for pleasure were least likely to have soil erosion, whereas farms used for breeding were more likely to have soil erosion (P = .0058). Despite the low-to-moderate adoption of BMPs, the maintenance of recommended vegetative cover and grass height as well as optimum values of soil nutrients indicated participating Maryland horse farms have a low potential for nutrient movement and NPS pollution.  相似文献   

7.
Western juniper (Juniperus occidentalis spp. occidentalis Hook.) has encroached on and now dominates millions of acres of sagebrush/bunchgrass rangeland in the Great Basin and interior Pacific Northwest. On many sites western juniper has significantly increased exposure of the soil surface by reducing density of understory species and surface litter. We used rainfall and rill simulation techniques to evaluate infiltration, runoff, and erosion on cut and uncut field treatments 10 years after juniper removal. Juniper-dominated hillslopes had significantly lower surface soil cover of herbaceous plants and litter and produced rapid runoff from low-intensity rainfall events of the type that would be expected to occur every 2 years. Direct exposure of the soil to rainfall impacts resulted in high levels of sheet erosion (295 kg · ha-1) in juniper-dominated plots. Large interconnected patches of bare ground concentrated runoff into rills with much higher flow velocity and erosive force resulting in rill erosion rates that were over 15 times higher on juniper-dominated plots. Cutting juniper stimulated herbaceous plant recovery, improved infiltration capacity, and protected the soil surface from even large thunderstorms. Juniper-free plots could only be induced to produce runoff from high-intensity events that would be expected to occur once every 50 years. Runoff events from these higher-intensity simulations produced negligible levels of both sheet and rill erosion. While specific inferences drawn from the current study are limited to juniper-affected sites in the Intermountain sagebrush steppe, the scope of ecosystem impacts are consistent with woody-plant invasion in other ecosystems around the world.  相似文献   

8.
The influence of bush density on the grass component of the herbaceous layer was investigated for three savanna veld types (Molopo Thornveld, Mixed Vaalbos Thornveld, and the Eastern Grass and Bushveld) in the Northern Cape and North-West Province of South Africa. Relationships between bush density and the density, species composition and phytomass production of the grass component were determined over a four-year period. Bush encroachment had an adverse influence on the density and production of the grass component, but not on the species composition. Fluctuations in seasonal rainfall appeared to be the most important factor governing changes in the species composition of the grass component. Bush enchroachment (2 500 tree equivalents ha?l) decreased the potential grazing capacity by as much as 331%, 149% and 58% in the Molopo Thornveld, the Mixed Vaalbos Thornveld and the Eastern Grass Bushveld, respectively, In comparison to sites with tree densities of less than 400 tree equivalents ha?1. In the encroached condition grazing capacities of 15, 13 and 10 ha LSU?1 are recommended for the Molopo Thornveld, the Mixed Vaalbos Thornveld and the Eastern Grass and Bushveld, respectively. The implementation of bush control measures in all problem areas is proposed in order to restore the productivity of these areas in the long term.  相似文献   

9.
The soil seed bank is an important ecological component of grassland restoration and renewal. In semiarid regions, grassland restoration and renewal are highly affected by annual variations in precipitation and grazing activity because these variations can affect the composition, density, richness, and diversity of seeds in the soil. This study aimed to characterize and compare these parameters of the germinable seed bank under different stocking rates in a winter grazing system in a semiarid area of China in 2015 and 2016 (dry and near-average rainfall condition, respectively). The composition, density, richness, and diversity of seeds were determined by the method of seedling emergence. The results showed that a total of 18 species belonging to nine families germinated from the soil. Drought significantly reduced the density, richness, and diversity of the soil seed bank, but grazing was able to significantly increase the richness and diversity of the soil seed bank by increasing the richness and diversity of the aboveground vegetation. The similarity between the soil seed bank and aboveground vegetation was influenced by the rainfall conditions: in the dry year, it was higher at the lower stocking rates (0 and 0.4 animal unit months [AUM] ha–1), and in the near-average rainfall condition year, it was higher at the higher stocking rates (0.8 and 1.3 AUM ha–1).  相似文献   

10.
We used very large scale aerial (VLSA) photography to quantify spatial patterns in bare soil in the northeastern Colorado shortgrass steppe. Using three pairs of pastures stocked at moderate (0.6 animal unit months &lsqb;AUM] · ha-1) versus very heavy (1.2 AUM · ha-1) rates, we detected greater bare soil under very heavy (mean = 22.5%) versus moderate stocking (mean = 13.5%; P = 0.053) and a lower coefficient of variation across pastures under very heavy (0.48) versus moderate stocking (0.75; P = 0.032). Bare soil exhibited significant positive spatial autocorrelation across distances of 60–120 m under moderate stocking (Moran's I = 0.14), while patchiness at this scale was eliminated under very heavy grazing (I = -0.05). Across distances of 120–480 m, we observed no spatial autocorrelation with either stocking rate. Spatial autocorrelation was greatest at a separation distance of 2 m (I = 0.48–0.58) but was unaffected by stocking rate at this scale. Thus, very heavy grazing did not increase spatial autocorrelation in bare soil across scales of 2–480 m. Means and variability in the distribution of bare soil were not influenced by ecological site. Bare soil increased primarily at the scale of individual plant clusters through both increases in the density of small (2–20 cm) bare patch intercepts and increases in the frequency of bare patch intercepts of 20–60 cm (rather than &spilt; 20 cm). Our approach demonstrates the utility of VLSA for analyzing interactions between grazing and other landscape features and highlights the importance of spatially explicit sampling across broad scales (pastures) while testing for potential shifts in patchiness of bare soil at the scale of plant interspaces.  相似文献   

11.
The influence of grazing protection caused by streambank fencing on soil mesofauna density is unknown. Our objective was to determine if grazing protection (ungrazed vs. grazed), location (upland vs. riparian pasture), and seasonal (spring vs. fall) treatment effects associated with streambank fencing had a significant influence on soil mesofauna distribution and density. We collected five intact soil cores (0–5 cm depth) in June and October of 2012 from within four treatments consisting of ungrazed and grazed riparian and upland pastures associated with streambank fencing along an 800-m reach of the Lower Little Bow River in southern Alberta, Canada. Soil mesofauna were extracted and densities of Acari (mites) taxa, Collembola (springtails) taxa, and other mesofauna were determined. Grazing protection resulted in a significant (P ≤ 0.05) negative response of Astigmata mite densities for the upland pasture, and a positive response for Oribatida mites and total Collembola, and Hypogastruridae and Onychiuridae springtails for both pastures. Location and season had a significant influence on Acari and Collembola taxa, but the effects were dependent on interaction effects. We conclude that grazing protection influenced certain soil mesofauna in pastures associated with streambank fencing, and this may influence decomposition of soil organic matter, nutrient cycling, and soil structure in associated pastures.  相似文献   

12.
A comparison of animal gains and vegetation trends was made from 2002–2008 between a continuous season-long stocking (SLS) system and a modified intensive–early stocking system (IES) with late-season grazing (IES 1.6× + 1; 1.6 times the number of animals of the SLS system from May 1 to July 15, and 1 times the number of animals of SLS from July 15 to October 1) on shortgrass native rangeland of western Kansas. The continuous season-long stocked system placed animals at a density of 1.37 ha · steer?1 from May through October, or 2.63 animal unit months (AUM) · ha?1, whereas the intensive–early stocked system with late-season grazing (3.33 AUM · ha?1) stocked pastures at 0.85 ha · steer?1 from May through the middle of July, and then stocked pastures at 1.37 ha · steer?1 for the remainder of the grazing season by removing the heaviest animals mid-July each yr. Average daily gains (0.78 vs. 0.70 kg · d?1, P = 0.039) and total animal gain (58 vs. 52 kg, P = 0.042) were different between the continuous season-long stocked and the intensive–early stocked animals during the first half of the grazing season. No difference was found between average daily gain (0.61 vs. 0.62 kg · d?1, P = 0.726) and total animal gain (48 vs. 49 kg, P = 0.711) for the continuous season-long stocked and intensive–early stocked with late-season grazing animals during the last half of the season. Total individual animal gain (106 vs. 101 kg, P = 0.154) and average daily gain (0.70 vs. 0.66 kg · d?1, P = 0.152) was not different between the continuous season-long stocked and the intensive–early stocked system animals that were on pasture the entire grazing season. Total beef gain on a land-area basis (96 vs. 77 kg · ha?1, P = 0.008) was greater for the modified intensive–early stocked system with late-season grazing with greater animal densities. Changes in residual biomass and most key vegetation components at the end of the grazing season were not different between the two systems.  相似文献   

13.
Catchment characteristics and disturbances control the conditions and processes found in stream ecosystems. We examined nutrient cycling linkages between riparian soils and adjacent streams and the impacts of the removal of ungulate grazing on these ecosystems and processes at six grazing exclosure sites in the Valles Caldera National Preserve, NM, USA. The exclusion of native and domestic ungulate grazers for 3 yr significantly increased the riparian aboveground biomass of standing vegetation (273 ± 155 in grazed vs. 400 ± 178 g . m-2 in exclosures) and litter (58 ± 75 in grazed vs. 110 ± 76 g . m-2 in exclosures) (P = 0.003 and 0.006, respectively). Except for an increase in total soil phosphorous (P) at three of the six sites, soil nutrient values were minimally affected by grazing after five growing seasons. Within the six sites studied, no connection was found between 0–15-cm depth soils, which were P-limited based on stoichiometric ratios, and stream nutrient availability or limitation, which were nitrogen limited. Stream geomorphology was not significantly altered by 5 yr of grazing exclusion. The elimination of grazing suppressed instream nutrient processing with significantly longer NH4 uptake lengths (P = 0.003). These results suggest the exclusion of ungulate grazing impacts terrestrial characteristics (increased standing vegetative biomass) that are linked to ecosystem services provided by adjacent aquatic ecosystems (reduced N-uptake). Management plans should carefully balance the positive effect of grazing on stream nutrient processing and retention reported here with the well-documented grazing-related loss of other ecosystem services such as decreased fish and aquatic invertebrate habitat and effects on water-quality parameters such as turbidity and water temperature.  相似文献   

14.
A study was conducted on upland range in the Nebraska Sandhills to determine differences in plant species frequency of occurrence and standing crop at various topographic positions on pastures grazed with short-duration grazing (SDG) and deferred-rotation grazing (DRG). Pastures within each grazing treatment were grazed at comparable stocking rates (SDG = 1.84 animal unit months (AUM) · ha?1; DRG = 1.94 AUM · ha?1) by cow–calf pairs from 1999 to 2005 and cow–calf pairs and spayed heifers from 2006 to 2008. Plant frequency of occurrence data were collected from permanently marked transects prior to, midway through, and at the conclusion of the study (1998, 2003, and 2008, respectively) and standing crop data were collected annually from 2001 to 2008 at four topographic positions (dune top, interdune, north slope, and south slope). Livestock performance data were collected during the last 3 yr of the study (2006 to 2008). Positive change in frequency of occurrence of prairie sandreed (Calamovilfa longifolia [Hook.] Scribn.) was 42% greater on DRG pastures than SDG after 10 yr. Total live standing crop did not differ between DRG and SDG except in 2001 when standing crop was 23% greater on DRG pastures. Standing crop of forbs and sedge was variable between grazing methods on interdune topographic positions depending on year. Average daily gain of spayed heifers (0.84 ±  kg · d?1 SE) did not differ between SDG and DRG. Overall, SDG was not superior to a less intensively managed grazing method (i.e., DRG) in terms of vegetation characteristics and livestock performance.  相似文献   

15.
Collective action, on communal grazing land, has evolved in the highlands of northwestern Ethiopia to mitigate the problems of feed shortage and land degradation due to overgrazing. The exercise is liked by farmers for improving the availability of natural pasture during the long dry season when other feed sources get depleted. However, large portions of the communal grazing lands are still managed under free grazing throughout the year. This study was undertaken in Maynet village in the upper Blue Nile basin, northwestern Ethiopia, to assess the impacts of three different types of grazing land management (GLM) and two slope gradients (<10%; 15–25%) on aboveground herbaceous biomass yield, ground cover, species richness, runoff, soil loss and soil bulk density of grazing lands. The GLMs include (a) freely open communal GLM, (b) restricted communal GLM – collective management of communal grazing land locally named as ‘yebere sar’ and (c) private holding GLM. Stocking density was more than carrying capacity of grazing lands across all GLMs. However, the extent of overstocking problem was exceptionally severe in freely open communal GLM. The interaction between GLM and slope was significant (P<0.05) for runoff, soil loss and runoff coefficient. The average runoff coefficient was close to 50% in freely open communal GLM on steeper slopes (15–25%). Freely open communal GLM on steeper slopes resulted in consistently highest cumulative runoff and soil loss amounting to 491 mm and 32 t/ha per year, respectively. Polynomial regression analysis showed that quadratic relationship (r2=0.87) existed between soil loss and runoff. But, soil loss was close to nil when runoff did not exceed 2 mm per rainfall event. As expected, restricted communal GLM appeared to reduce surface runoff by more than 40% and curb the rate of soil erosion by more than 50% compared to freely open communal GLM. Its vegetation cover persisted above 70% throughout the year, meeting the threshold level recommended to keep surface runoff and soil loss to minimum. Reducing the problem of overstocking and pasture resting in August–November are important components to improve ground cover and aboveground herbaceous biomass yield, which in turn reduce land degradation on grazing lands.  相似文献   

16.
Dryland ecosystems are particularly vulnerable to erosion generated by livestock grazing. Quantifying this risk across a variety of landscape settings is essential for successful adaptive management, particularly in light of a changing climate. In the Upper Colorado River Basin, there are nearly 25 000 km2 of rangelands with underlying soils derived from Mancos Shale, an erodible and saline geologic parent material. Salinity is a major concern within the Colorado River watershed, much of which is attributed to runoff and leaching from Mancos Shale deposits. In a 60-yr paired-watershed experiment in western Colorado, we used silt fences to measure differences in saline hillslope erosion, including both total sediment yield and concentrations of primary saline constituents (Na and Se), in watersheds that were either exposed to grazing or where livestock was excluded. After accounting for the strong effects of soil type, slope, and antecedent precipitation, we found that grazing increased sediment loss by ≈50% across our 8-yr time series (0.1–1.5 tn ha−1), consistent with levels reported at the watershed scale in early published work from studies at the same location. Eroded sediment Se levels were low and unaffected by grazing history, but Na concentrations were significantly reduced on grazed hillslopes, likely due to depletion of surface Na in soils exposed to chronic soil disturbance by livestock. Variable selection and path analysis identified that biological soil crust (BSC) cover, more than any other variable, explained the differences in sediment yields between grazed and ungrazed watersheds, partially through the enhancement of soil aggregate stability. Our results suggest that BSC cover should be granted heightened consideration in rangeland decision support tools (e.g., state-and-transition models) and that measures to reduce surface disturbance from livestock such as altering the timing or intensity of grazing may be effective for reducing downstream impacts.  相似文献   

17.
Woodland encroachment on United States rangelands has altered the structure and function of shrub steppe ecosystems. The potential community structure is one where trees dominate, shrub and herbaceous species decline, and rock cover and bare soil area increase and become more interconnected. Research from the Desert Southwest United States has demonstrated areas under tree canopies effectively store water and soil resources, whereas areas between canopies (intercanopy) generate significantly more runoff and erosion. We investigated these relationships and the impacts of tree encroachment on runoff and erosion processes at two woodland sites in the Intermountain West, USA. Rainfall simulation and concentrated flow methodologies were employed to measure infiltration, runoff, and erosion from intercanopy and canopy areas at small-plot (0.5 m2) and large-plot (13 m2) scales. Soil water repellency and vegetative and ground cover factors that influence runoff and erosion were quantified. Runoff and erosion from rainsplash, sheet flow, and concentrated flow processes were significantly greater from intercanopy than canopy areas across small- and large-plot scales, and site-specific erodibility differences were observed. Runoff and erosion were primarily dictated by the type and quantity of ground cover. Litter offered protection from rainsplash effects, provided rainfall storage, mitigated soil water repellency impacts on infiltration, and contributed to aggregate stability. Runoff and erosion increased exponentially (r2 = 0.75 and 0.64) where bare soil and rock cover exceeded 50%. Sediment yield was strongly correlated (r2 = 0.87) with runoff and increased linearly where runoff exceeded 20 mm·h?1. Measured runoff and erosion rates suggest tree canopies represent areas of hydrologic stability, whereas intercanopy areas are vulnerable to runoff and erosion. Results indicate the overall hydrologic vulnerability of sagebrush steppe following woodland encroachment depends on the potential influence of tree dominance on bare intercanopy expanse and connectivity and the potential erodibility of intercanopy areas.  相似文献   

18.
Exclusion of large grazers from rangelands that evolved with significant grazing pressure can alter natural processes and may have legacy effects by changing magnitude or direction of community responses to subsequent disturbance. Three moderately grazed pastures were paired with 12-ha areas with 15 yr of livestock exclusion. Six treatments were assigned to each in a 2 x 3 factorial arrangement of fire (fall fire or no fire) and grazing utilization (0%, 50%, or 75% biomass removal) to determine grazing history effects on rangeland response to subsequent disturbance. Livestock exclusion increased C3 perennial grass (1 232 vs. 980 ± 50 kg ? ha-1) and forbs (173 vs. 62 ± 19 kg ? ha-1) and reduced C4 perennial grass (36 vs. 180 ± 25 kg ? ha-1) with no effect on total current-year biomass. Diversity was greater in pastures than exclosures (H’ = 1.5400 vs. 1.3823 ± 0.0431). Every biomass, cover, and diversity measure, except subshrub biomass, was affected by fire, grazing utilization, or both. Contrary to expectations, grazing history only interacted with fire effects for old standing dead material and interactions with grazing utilization were limited to old dead, bare ground, richness and dominance. Fire by grazing utilization interaction was limited to bare ground. Fire reduced annual grass (64 vs. 137 ± 29 kg ? ha-1), forbs (84 vs. 133 ± 29 kg ? ha-1), and diversity (H’ = 1.3260 vs. 1.5005 ± 0.0537) with no difference in total current-year biomass (1 557 vs. 1 594 ± 66 kg ? ha-1). Grazing to 75% utilization reduced total current-year biomass (1 467 vs. 1 656 ± 66 kg ? ha-1) and dominance (0.4824 vs. 0.5584 ± 0.0279). Grazing history affected starting points for most variables, but changes caused by grazing utilization or fire were similar between pastures and exclosures, indicating management decisions can be made based on independent knowledge of grazing or fire effects.  相似文献   

19.
In 1998, fires burned more than 11 330 ha of rangeland on Dugway Proving Ground in Utah's west desert. Postfire revegetation was implemented in 2 affected salt desert shrub communities (greasewood; Sarcobatus vermiculatus Hook. and black sagebrush/shadscale; Artemisia nova A. Nels; Atriplex confertifolia Torr. & Frem.) to deter cheatgrass (Bromus tectorum L.) encroachment. We monitored cheatgrass densities for 3 years after the fire in burned drill seeded, burned not-seeded, and unburned plots to assess the rate of invasion and determine the impact on cheatgrass of drill seeding perennial species. Cheatgrass invaded quickly in both shrub sites following the fires. In the greasewood site, drill seeded species germinated but did not establish. This was likely due to a combination of soil salinity and extremely dry weather conditions during the second year of the study. Drill seeded species in the black sagebrush site germinated and established well, resulting in the establishment of 16.5 perennial grasses · m-2 and 1 356 shrubs · ha-1. Cheatgrass densities were consistently lower in drill seeded versus not-seeded plots, although these were not always statistically different when Bonferroni comparisons were considered. The initial decrease in cheatgrass densities in drill seeded plots may have resulted from soil disturbance coupled with extremely low precipitation rather than competitive effects. Nevertheless, as seeded species mature and increase their competitive ability, we predict long-term suppression of cheatgrass in the absence of further disturbance.  相似文献   

20.
Grazing modifies the structure and function of ecosystems, affecting soil organic carbon (SOC) storage. Although grazing effects on some ecosystem attributes have been thoroughly reviewed, current literature on grazing effects on SOC needs to be synthesized. Our objective was to synthesize the effects of grazing on SOC stocks in grasslands, establishing the major mechanistic pathways involved. Additionally, and because of its importance for carbon (C) biogeochemistry, we discuss the controls of soil organic nitrogen (N) stocks. We reviewed articles analyzing grazing effects on soil organic matter (SOM) stocks by comparing grazed vs. ungrazed sites, including 67 paired comparisons. SOC increased, decreased, or remained unchanged under contrasting grazing conditions across temperature and precipitation gradients, which suggests that grazing influences the factors that control SOC accumulation in a complex way. However, our review also revealed some general patterns such as 1) root contents (a primary control of SOC formation) were higher in grazed than in their ungrazed counterparts at the driest and wettest sites, but were lower at sites with intermediate precipitation (~400 mm to 850 mm); 2) SOM C:N ratios frequently increased under grazing conditions, which suggests potential N limitations for SOM formation under grazing; and 3) bulk density either increased or did not change in grazed sites. Nearly all sites located in the intermediate precipitation range showed decreases or no changes in SOC. We grouped previously proposed mechanisms of grazing control over SOC into three major pathways that can operate simultaneously: 1) changes in net primary production (NPP pathway), 2) changes in nitrogen stocks (nitrogen pathway), and 3) changes in organic matter decomposition (decomposition pathway). The relative importance of the three pathways may generate variable responses of SOC to grazing. Our conceptual model suggests that rangeland productivity and soil carbon sequestration can be simultaneously increased by management practices aimed at increasing N retention at the landscape level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号