首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rice protein content (RPC) and rice fatcontent (RFC) are two important componentsof rice nutritional quality. In order toexamine the genetic basis of these traits,a doubled haploid (DH) population and anRFLP linkage map consisting of 232 markerloci were used to search QTLs for thetraits with the computer programQTLMapper1.0. This program is based onmixed linear models and allows simultaneousmapping of both main-effect and digenicepistastic QTLs in a DH population. RPC andRFC were evaluated based on a dry weightbasis of head rice by the Kjeldahl andSoxhlet methods respectively. A total offive main-effect QTLs for RPC wereresolved. The five QTLs collectivelyexplained 74% of the phenotypic variationwith LOD=15.2. Among these QTLs, the majorQTL qRPC-5 with the largest effectwas mapped in the interval of RG435-RG172aon chromosome 5. It accounted for 35% ofthe phenotypic variation with a LOD of16.7. At this locus the allele from theparent `Gui 630' increased RPC by 1.32%.The second QTL qRPC-7 was mapped inthe interval ZG34B-G20 on chromosome 7. Itexplained 23% of the phenotypic variancewith a LOD of 6.1. Its positive alleles,also from the parent `Gui 630', increasedRPC by 1.05%. As for the remaining threeQTLs, their additive effects wererelatively small and their positive alleleswere all inherited from the parent `02428'.Three QTLs for RFC were mapped onchromosome 1, 2 and 5 respectively. Theycollectively explained 44% of thephenotypic variation. Among these loci,QTLs qRFC-2 and qRFC-5 withlarger effects individually accounted for24% and 26% of the phenotypic variancerespectively. At QTL qRFC-2 thepositive allele came from the parent `Gui630', while at QTL qRFC-5 thepositive allele from the parent `02428'.The fact that both parents possess thepositive alleles at the QTLs for the twotraits provides an appropriate explanationfor the large transgressive segregationobserved in the DH lines. Furthermore, onlyone pair of epistatic loci explaining only5.1% of the phenotypic variance wasdetected for RPC, whereas seven pairs ofepistatic loci were resolved for RFC. Thetotal absolute effects of these RFCinteractions amounted to 0.97% which ismuch larger than that (0.42%) of the threemain-effect QTLs for the trait. Alongwith the observation that RPC showed a highheritability (78%), these resultsdemonstrate that RPC in the DH populationcould be mainly controlled by relativelyfew QTLs with large main-effects. As forRFC, epistatic interactions might be aneven more important component of thegenetic basis and the segregation of the DHlines could be largely explained by a fewmain-effect QTLs and many epistatic loci.In addition, a highly negative correlation(r = –0.45) between RPC and RFC inthe DH population was observed. Thiscorrelation could be largely explained bythe linkage of qRPC-5 and qRFC-5 with the directions of effectsopposite and the co-locations of the twoepistatic loci for RFC respectively withtwo different main-effect QTLs for RPC. Theinformation reported in the present papermay be useful for improving ricenutritional quality by means ofmarker-assisted selection.  相似文献   

2.
Improving the eating quality of cooked rice has been one of the most important objectives in rice breeding programs. Eating quality of cooked rice is a complex trait including several components, such as external appearance, taste, aroma, and texture. Therefore, dissection of these components followed by marker-assisted selection of detected QTL(s) may be a useful approach for achieving desirable eating quality in rice breeding. Whiteness of cooked rice (WCR) is an important factor related to the external appearance of cooked rice. WCR is known to be associated with the amylose and protein contents of the endosperm. However, the genetic basis of WCR remains unclear. In this study, we evaluated phenotypic variation in WCR among recently developed rice cultivars from Hokkaido, Japan. Then, we developed doubled haploid lines (DHLs) derived from a cross between two cultivars from Hokkaido, Joiku No. 462 (high WCR) and Jokei06214 (low WCR). Using the DHLs, we detected two QTLs for WCR, qWCR3 and qWCR11, on chromosomes 3 and 11, respectively. We also examined the dosage effect of the two QTLs based on both the categorized segregants in the DHLs and the relationship between the WCR phenotype and inheritance around the QTL regions in cultivars from Hokkaido.  相似文献   

3.
The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan.  相似文献   

4.
The number of vascular bundles in peduncle and the ratio of vascular bundles to primary rachis branches (V/R ratio)distinguishable between indica andjaponica, are the traits associated with the processes of differentiation between indica and japonica inrice (Oryza sativa L.). In this paper a doubled-haploid population derived from the F1 hybrid of a cross between anindica cultivar and a japonicacultivar was used to map quantitative trait loci(QTLs) controlling numbers of vascular bundles in peduncle, primary rachis branches and the V/R ratio. For vascular bundles, three QTLs were detected and they collectively explained 58.8% of the total variation. Among them, the QTLqVB-8 with the largest effect,located on chromosome 8, individually accounted for 31.1% of the total variation. Two QTLs controlling primary rachis branches, located on chromosome 8and 10 respectively, were identified and they individually explained 10.5% and18.0% of the total variation respectively. Three QTLs for the V/R ratio, mapped on chromosome 1, 2 and 8, respectively,jointly explained 61.3% of the total variation. Of the three QTLs, the QTL qV/R-1 with the largest additive effect,explained 25.3% of the total variation,was located on chromosome 1 and found to be closely linked to the gene sh-2, a major gene underlying grain-shattering ability. In addition, four and two pairs of significant epistatic QTLs were detected for vascular bundles and the V/R ratio,respectively, but none for rachis branches. Our results suggested that the numbers of vascular bundles and primary rachis branches were independently controlled by different polygenic systems, but the two polygenic systems shared a fraction of quantitative trait loci. The present study also demonstrated that the chromosome region carrying the QTL qV/R-1 for the V/R ratio and the gene sh-2 might play an important role in the processes ofindica-japonica differentiation in rice (Oryza sativa L.). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
To study the genetic basis of rice flag leaf morphology, quantitative genetic analysis was conducted in a population of 37 chromosome segment substitution lines (CSSLs) of indica elite variety ‘Habataki’ in the background of japonica cultivar ‘Sasanishiki’ across three different environments. The CSSLs showed normal distribution with transgressive segregation, indicating that these four traits are controlled by polygenes. Moreover, analyses of variance showed that these traits were highly influenced by the growing environment, which are typical for polygenic quantitative traits. Seven quantitative trait loci (QTLs) on four chromosomes were detected in total: four for flag leaf width, one for flag leaf area and two for flag leaf angle. Two key QTLs, qFLW4 and qFLAG5 controlling flag leaf width and angle, respectively, were identified in all three environments. These QTLs could provide useful information for marker‐assisted selection in improving the performance of plant architecture with regard to leaf angle and area. Moreover, developed CSSLs with these QTLs information are also useful research materials to reveal the importance of leaf morphology in relation to grain yield.  相似文献   

6.
Development of soybean cultivars with high seed yield is a major focus in soybean breeding programs. This study was conducted to identify genetic loci associated with seed yield-related traits in soybean and also to clarify consistency of the detected QTLs with QTLs found by previous researchers. A population of 135 F2:3 lines was developed from a cross between a vegetable soybean line (MJ0004-6) and a landrace cultivar from Myanmar (R18500). They were evaluated in the experimental field of Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand in a randomized complete block design with two replications each in 2011 and 2012 growing seasons. The two parents exhibited contrasting characteristics for most of the traits that were mapped. Analysis of variance showed that the main effects of genotype and environment (year) were significant for all studied traits. Genotype by environment interaction was also highly significant for all the traits. The population was genotyped by 149 polymorphic SSR markers and the genetic map consisted of 129 SSR loci which converged into 38 linkage groups covering 1156 cM of soybean genome. There were 10 QTLs significantly associated with seed yield-related traits across two seasons with single QTLs explaining between 5.0% to 21.9% of the phenotypic variation. Three of these QTLs were detected in both years for days to flowering, days to maturity and 100 seed weight. Most of the detected QTLs in our research were consistent with earlier QTLs reported by previous researchers. However, four novel QTLs including SF1, SF2 and SF3 on linkage groups L and N for seed filling period and PN1 on linkage group D1b for pod number were identified in the present study.  相似文献   

7.
Rice black‐streaked dwarf virus disease (RBSDVD), transmitted by small brown planthopper (SBPH, Laodelphax striatellus), causes serious loss in rice production. Breeding resistant cultivars are one of the most effective strategies to control the virus disease and its vector. By both natural inoculations in the field and modified seedling‐box screening test in the glasshouse, an indica variety WR24 showed high resistance to RBSDVD and SBPH. An F2:3 population consisting of 153 lines derived from a cross between WR24 and a susceptible japonica variety Suyunuo was used for quantitative trait loci (QTL) analysis of RBSDVD and SBPH resistance. The linkage map consisting of 130 SSR markers was constructed with an average marker interval of 13.90 cM, spanning a total of 1890.9 cM. Totally, five QTLs for RBSDV resistance, viz. qRBSDV3WR24, qRBSDV6WR24, qRBSDV7WR24, qRBSDV9WR24 and qRBSDV11WR24, were detected on chromosomes 3, 6, 7, 9 and 11, with LOD scores of 2.7, 3.08, 3.13, 5.28 and 3.7, respectively. Meanwhile, three QTLs for SBPH resistance, including qSBPH5WR24, qSBPH7WR24 and qSBPH10WR24, were mapped on chromosomes 5, 7 and 10, with LOD scores of 2.18, 3.5 and 3.57, respectively. All resistant alleles were from WR24. Among these QTLs, qRBSDV7WR24, qSBPH5WR24 and qSBPH10WR24 were newly reported, and qSBPH10WR24 showed major effect that explained 17.9% of total phenotypic variance. The RBSDVD and SBPH resistance QTLs and the tightly linked DNA markers can be utilized in RBSDV and SBPH resistance breeding in rice.  相似文献   

8.
9.
Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.  相似文献   

10.
11.
Increasing crop productivity is one of the prime goals of crop breeding research. Rice grain yield is a complex quantitative trait governed by polygenes. Although several QTLs governing grain yield traits have been reported and limited attempts have been made to map QTLs for grain yield parameters in Basmati rice. A population from the cross Sonasal and Pusa Basmati 1121 comprising 352 RILs was generated through the single seed descent method. A total of 12 QTLs governing yield and yield-related traits were mapped on six chromosomes, namely, 1, 2, 3, 7, 8 and 9, of which five QTLs were novel. We identified a novel and robust epistatic QTL (qPH1.1 and qPL1.1) governing plant height and panicle length, flanked by the markers RM5336-RM1 on chromosome 1. The gene encoding brassinosteroid insensitive 1-associated receptor kinase 1 precursor is the putative candidate gene underlying this epistatic QTL. Another novel QTL, qNT3.1, governing tiller number was bracketed to a region of .77 Mb between the markers RM15247 and RM15281 on chromosome 3. Of the 57 annotated gene models, Os03g0437600 encoding alpha/beta-fold hydrolase, a homologous to AtKai2 is a putative candidate gene underlying the novel QTL qNT3.1. The other QTLs such as qDFF1.1 governing days to 50% flowering co-localizes with the gene Ghd7, QTL for plant height qPH1.2 co-localizes with the gene sd1, the QTLs for panicle length co-localizes with FUWA and DEP2, the QTL for tiller number co-localizes with OsRLCK57 and QTLs for thousand-grain weight co-localize with the major gene GS3. The QTLs identified in the current study can be effectively used in marker-assisted selection for developing Basmati rice varieties with a higher yield.  相似文献   

12.
Root system development is an important target for improving yield in rice. Active roots that can take up nutrients more efficiently are essential for improving grain yield. In this study, we performed quantitative trait locus (QTL) analyses using 215 recombinant inbred lines derived from a cross between Xieqingzao B (XB), a maintainer line with short roots and R9308, a restorer line with long roots. Only a QTLs associated with root length were mapped on chromosomes 7. The QTL, named qRL7, was located between markers RM3859 and RM214 on chromosome 7 and explained 18.14–18.36% of the total phenotypic variance evaluated across two years. Fine mapping of qRL7 using eight BC3F3 recombinant lines mapped the QTL to between markers InDel11 and InDel17, which delimit a 657.35 kb interval in the reference cultivar Nipponbare. To determine the genotype classes for the target QTL in these BC3F3 recombinants, the root lengths of their BC3F4 progeny were investigated, and the result showed that qRL7 plays a crucial role in root length. The results of this study will increase our understanding of the genetic factors controlling root architecture, which will help rice breeders to breed varieties with deep, strong and vigorous root systems.  相似文献   

13.
Z. F. Li    J. M. Wan    J. F. Xia    H. Q. Zhai  H. Ikehashi 《Plant Breeding》2004,123(3):229-234
Milling quality of rice grains is important to both producers and consumers. In this study, quantitative trait loci (QTLs) controlling brown rice rate (BR), milled rice recovery (MR) and head rice recovery (HR) were analysed by composite interval mapping over 2 years using 98 backcross inbred lines (BILs). A total of 12 QTLs for the three traits were detected, of which five were for BR, four for MR and three for HR. The proportion of phenotypic variation explained by individual QTLs ranged from 7.5 to 19.9%, and additive effects contributed by a single QTL accounted for 0.46 to 2.34% of the variation. QTL‐by‐environment interactions were observed by comparing QTL mapping of the same population grown in two consecutive years. Three of five QTLs for BR and two of four QTLs for MR were detected in 2 years, and all three QTLs for HR were detected in 1 year only. BR was significantly correlated with MR, and all four QTLs of MR were located in the same regions as those of BR. This indicated that QTLs for highly correlated traits could often be detected in the same interval.  相似文献   

14.
Marker assisted backcrossing has been used effectively to transfer the submergence tolerance gene SUB1 into popular rice varieties, but the approach can be costly. The selection strategy comprising foreground marker and phenotypic selection was investigated as an alternative. The non-significant correlation coefficients between ranking of phenotypic selection and ranking of background marker selection in BC2F1, BC3F1 and BC3F2 generations indicated inefficiency of phenotypic selection compared to marker-assisted background selection with respect to recovery of the recipient genome. In addition, the introgression size of the chromosome fragment containing SUB1 was approximately 17 Mb, showing the effects of linkage drag. The significant correlation coefficient between rankings of phenotypic selection with the percentage of recipient alleles in the BC1F1 generation suggested that background selection could be avoided in this generation to minimize the genotyping cost. The phenotypically selected best plant of the BC3F1 generation was selfed and backcross recombinant lines were selected in the resulting BC3F4 generation. The selection strategy could be appropriate for the introgression of SUB1 QTL in countries that lack access to high-throughput genotyping facilities.  相似文献   

15.
To improve salt tolerance of two elite rice varieties, Ce258 and Zhongguangxiang1 (ZGX1), two sets of introgression lines (ILs) each comprising 200 BC1F10 lines derived from a common donor, IR75862, and two recipient parents, Ce258 and ZGX1, were used for mapping of QTLs for four salt tolerance‐related traits at the seedling stage. Although the three parents were susceptible to salt, the two IL populations showed transgressive segregations for salt tolerance with 12 and 8 salt tolerance ILs in the Ce258‐ILs and ZGX1‐ILs. Eighteen main‐effect QTLs were identified for the four traits in the two IL populations, and the IR75862 alleles at most loci showed increased and decreased salt tolerance in the ZGX1 and Ce258 backgrounds, suggesting overwhelming genetic background effects on QTL detection for salt tolerance. The qDSS11 simultaneously detected in the two backgrounds was validated in a F2 population derived from a salt tolerance line and ZGX1. Our results indicated that salt tolerance‐enhancing allele could be identified in the elite susceptible breeding lines and that introgression of the favourable alleles could facilitate the development of superior lines with greater salt tolerance levels.  相似文献   

16.
Using the marker information of 275 F2 plants quantitative traits determining morphological and yield characters were studied analyzing F3progenies grown in four different experiments at three sites. The map constructed contains 113 markers including the major dwarfing gene Ddw1 with an average distance of about 10 cM between adjacent markers. Of the 21 QTLs detected ten were found to map on chromosome 5RL in the region of Ddw1. Beside the expected effects on plant height and peduncle length that are most probably due to the presence of the major dwarfing gene, additional effects on yield characters and flowering time were discovered in that region which may be caused by pleiotropic effects of Ddw1. An additional supposed gene cluster consisting of four QTLs controlling flowering time and yield components was discovered in the centromere region of chromosome 2R. Further loci are distributed on chromosomes 1R (1), 4R (1) 6R (3) and 7R (1). The map positions of the quantitative trait loci detected in rye are discussed in relation to major genes or QTLs determining agronomically important traits in other cereals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Asian cultivated rice Oryza sativa L. was domesticated from its wild ancestor, O. rufipogon. During domestication, the cultivated rice lost its seed-shattering behaviour. Previous studies have shown that two major quantitative trait loci (QTLs; qSH1 and sh4) are responsible for the seed-shattering degree. Here, we produced introgression lines carrying non-functional alleles from O. sativa ‘Nipponbare’ at the two major QTLs in the genetic background of wild rice O. rufipogon W630, and examined the effects of the two QTLs on seed shattering and abscission layer formation. The introgression lines, with Nipponbare alleles at either or both loci, showed complete or partial abscission layer formation, respectively, indicating that other unknown loci might be involved in enhancing seed shattering in wild rice. We detected a single QTL named qSH3 regulating seed-shattering degree using an F2 population between Nipponbare and the introgression line carrying Nipponbare alleles at the two QTLs. Although we generated an introgression line for qSH3 alone, no effects on seed shattering were observed. However, a significant effect on seed-shattering degree was observed for the introgression line carrying Nipponbare alleles at qSH3 and the two QTLs, suggesting an important role of qSH3 on seed shattering in coordination with the two QTLs.  相似文献   

18.
Brown spot is a devastating rice disease. Quantitative resistance has been observed in local varieties (e.g., ‘Tadukan’), but no economically useful resistant variety has been bred. Using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) from ‘Tadukan’ (resistant) × ‘Hinohikari’ (susceptible), we previously found three QTLs (qBS2, qBS9, and qBS11) that conferred resistance in seedlings in a greenhouse. To confirm their effect, the parents and later generations of RILs were transplanted into paddy fields where brown spot severely occurred. Three new resistance QTLs (qBSfR1, qBSfR4, and qBSfR11) were detected on chromosomes 1, 4, and 11, respectively. The ‘Tadukan’ alleles at qBSfR1 and qBSfR11 and the ‘Hinohikari’ allele at qBSfR4 increased resistance. The major QTL qBSfR11 coincided with qBS11 from the previous study, whereas qBSfR1 and qBSfR4 were new but neither qBS2 nor qBS9 were detected. To verify the qBSfR1 and qBSfR11 ‘Tadukan’ resistance alleles, near-isogenic lines (NILs) with one or both QTLs in a susceptible background (‘Koshihikari’) were evaluated under field conditions. NILs with qBSfR11 acquired significant field resistance; those with qBSfR1 did not. This confirms the effectiveness of qBSfR11. Genetic markers flanking qBSfR11 will be powerful tools for marker-assisted selection to improve brown spot resistance.  相似文献   

19.
Kenji Fujino 《Euphytica》2003,131(1):97-103
Rice is grown in diverse environments at latitudes ranging from 53°N to 40°S. In Japan, Hokkaido is the northernmost rice cultivation region(42–45°N latitude). Only extremely early maturing (heading) varieties that have extremely low photoperiod sensitivity are adapted to this area. Heading date is the most important trait in adaptation to this particular environment. Also, the efficient manipulation of heading date is a crucial component of rice improvement. To determine the genetic basis for heading date among cultivars grown in Hokkaido, the heading behaviour was analyzed. Clear segregations were observed. To estimate the photoperiod sensitivity of the genes involved, the cultivars and F1 plants from crosses between the cultivars were grown under different daylength conditions. The results indicated that the genes controlling heading date are photoperiod sensitive, suggesting they play important roles in the northernmost rice cultivation regions in Japan, to which only cultivars with extremely low photoperiod sensitivity are adapted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Rice tungro disease (RTD) is one of the destructive and prevalent diseases in the tropical region. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Cultivation of japonica rice (Oryza sativa L. ssp japonica) in tropical Asia has often been restricted because most japonica cultivars are sensitive to short photoperiod, which is characteristic of tropical conditions. Japonica1, a rice variety bred for tropical conditions, is photoperiod-insensitive, has a high yield potential, but is susceptible to RTD and has poor grain quality. To transfer RTD resistance into Japonica1, we made two backcrosses (BC) and 8 three-way crosses (3-WC) among Japonica1 and RTSV-resistant cultivars. Among 8,876 BC1F2 and 3-WCF2 plants, 342 were selected for photoperiod-insensitivity and good grain quality. Photoperiod-insensitive progenies were evaluated for RTSV resistance by a bioassay and marker-assisted selection (MAS), and 22 BC1F7 and 3-WCF7 lines were selected based on the results of an observational yield trial. The results demonstrated that conventional selection for photoperiod-insensitivity and MAS for RTSV resistance can greatly facilitate the development of japonica rice that is suitable for cultivation in tropical Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号