首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Rapid vegetation sampling methods based on visual estimation are useful for monitoring changes in rangeland vegetation composition because large spatial and temporal scales are often involved and have limited sampling resources available. Here we compared two sampling methods in their ability to detect changes in vegetation composition following rangeland development: 1) species percent cover estimates within subplots (the percent cover [PC] method) and 2) rankings of relative biomass of the 10 most abundant species across the whole plot and the ratio of two of them (the visual ranking [VR] method). Both methods were applied on 30 experimental plots at year 26 of a long-term factorial trial of five soil fertility levels and three sheep grazing intensities. Multivariate statistical methods showed significant effects of experimental treatments (fertilizer level and sheep grazing intensity) and of vegetation sampling method (VR vs. PC) on vegetation composition. Importantly, we detected no significant interactions involving sampling method, indicating that the effect of sampling method was consistent across experimental treatments. Effects of fertilizer on vegetation composition were an order of magnitude greater than the effect of sampling method, whereas the latter was twice as important as the effect of grazing. Results were robust to differential weights given to relative abundances vs. compositional changes. Differences between methods were primarily driven by the PC method giving lower abundance estimates of one species, lupin (a hybrid of Lupinus polyphyllus Lindl.), relative to the VR method. Our results support the use of the VR method as a rapid yet powerful method for monitoring changes in vegetation composition under rangeland development.  相似文献   

2.
Abstract

The descending‐point method of vegetation survey proved effective in measuring meaningful plant cover changes during a grazing period. No significant changes in basal cover or plant height were detected. Changes in canopy spread and canopy cover could only be used to detect changes in utilization at levels lighter than 50 % and 70 % respectively. Selective utilization between species implies that it may be extremely difficult to achieve a specified level of utilization in practice. Therefore, in karoo veld, resting may be considered a more practicable veld management strategy than attempts to achieve a specific utilization intensity. The descending‐point method is time‐consuming in determining canopy cover. Thus, methods based on more effective point sampling, within the canopy spread, may be more appropriate for this purpose.  相似文献   

3.
Root plowing is a common management practice to reduce woody vegetation and increase herbaceous forage for livestock on rangelands. Our objective was to test the hypotheses that four decades after sites are root plowed they have 1) lower plant species diversity, less heterogeneity, greater percent canopy cover of exotic grasses; and 2) lower abundance and diversity of amphibians, reptiles, and small mammals, compared to sites that were not disturbed by root plowing. Pairs of 4-ha sites were selected for sampling: in each pair of sites, one was root plowed in 1965 and another was not disturbed by root plowing (untreated). We estimated canopy cover of woody and herbaceous vegetation during summer 2003 and canopy cover of herbaceous vegetation during spring 2004. We trapped small mammals and herpetofauna in pitfall traps during late spring and summer 2001–2004. Species diversity and richness of woody plants were less on root-plowed than on untreated sites; however, herbaceous plant and animal species did not differ greatly between treatments. Evenness of woody vegetation was less on root-plowed sites, in part because woody legumes were more abundant. Abundance of small mammals and herpetofauna varied with annual rainfall more than it varied with root plowing. Although structural differences existed between vegetation communities, secondary succession of vegetation reestablishing after root plowing appears to be leading to convergence in plant and small animal species composition with untreated sites.  相似文献   

4.
Geomorphic reclamation creates variable topography and surface architecture, including rolling hillslopes and drainages. In contrast, traditional methods of reclamation result in landscapes susceptible to erosion due to steep, linear gradients. Geomorphic approaches to surface mine reclamation are relatively new, and hypotheses suggest the use of geomorphic principles in reclamation will improve vegetation outcomes relative to traditional methods. Topographic variability created by geomorphic reclamation likely results in more environmental heterogeneity, which should correlate with greater plant diversity. We examined revegetation outcomes of traditional and geomorphic reclamation on two reclaimed surface mines in Wyoming using nadir image sampling. Functional group diversity and measures of cover were compared between reclamation methods and undisturbed rangeland. Geomorphic reclamation supported greater total richness and greater native functional group richness relative to traditional reclamation. Native species cover on geomorphic reclamation, particularly for native perennial grasses, was either similar to undisturbed rangeland or greater than undisturbed rangeland and traditional reclamation. Reclamation shrub cover differed significantly from undisturbed sites, but was greater in geomorphic treatments. Results of nadir image analysis are compared to line-point intercept data from the same locations and outcomes are discussed in light of different reclamation techniques and sampling methods. Significant differences in cover categories were observed between nadir image and line-point intercept methods, however both methods revealed similar patterns between study sites.  相似文献   

5.
Leafy spurge (Euphorbia esula L.) is an aggressive exotic species that has been successfully suppressed in a variety of situations using classical biological control (flea beetles; Aphthona spp.). This 9-yr study investigated patterns of vegetation responses following significant reductions in leafy spurge cover and density by flea beetles in southeastern Montana. We hypothesized that the vegetation following leafy spurge suppression would be dominated by species and plant functional groups able to persist through heavy infestations. Flea beetles were first released in 1998, and by 2006 leafy spurge foliar cover was reduced 80% to 90% compared to 1998 values on both release and nonrelease plots. Although total cover of the resident vegetation, excluding leafy spurge, increased 72% to 88%, relative cover of the functional groups (native forbs, native sedges, native grasses, and non-native species) was similar among years and between release and nonrelease plots. Mean diversity and mean species richness values did not differ among years or between release and nonrelease plots (P < 0.05), but mean diversity on both release and nonrelease plots was significantly less than noninfested plots, although richness was similar (P < 0.05). Indicator species analysis revealed that non-native Poa spp. replaced leafy spurge as the dominant species on release and nonrelease plots. Conversely, noninfested plots contained a variety of native species with high indicator values. Although total abundance of the resident vegetation in 2006 was significantly greater than 1998, plant species composition and relative cover showed little change for the duration of the study. Failure of the native vegetation to recover to a community that approached nearby noninfested conditions may be attributed to a variety of interacting scenarios, some of which may be ameliorated by treating infestations as soon as possible to avoid long-term residual effects.  相似文献   

6.
基于数码相机的草地植被盖度测量方法对比研究   总被引:3,自引:0,他引:3  
草地植被盖度是表征生态系统植被生长状况及环境质量的重要参数。在草地植物群落野外调查中,可以利用数码相机拍摄草地样方照片,而后在室内利用图像处理软件进行自动或半自动的植被盖度测量。随着移动智能设备(如iPhone/iPAD或各类Android Phone/PAD)的快速发展和普及,野外实时获取草地样方照片,同步计算草地植被盖度,并与有关遥感反演参数产品作校验对比分析,将成为未来地学移动测量和研究的重要方向。本研究在总结梳理既有利用数码相机识别植被盖度方法的基础上,设计了低覆盖、中低覆盖、中等覆盖、中高覆盖、高覆盖5种不同植被盖度情景,以及从早上6:00 到下午6:00、每隔2 h一次、全天共7次不同光照环境下的照相方案。继而以Photoshop人工勾勒和测算方法为基准,选择RGB阈值法、RGB决策树法、HSV判别法3种自动测量方法开展对比研究。测量结果的对比分析表明,草地盖度变化对RGB阈值法和HSV判别法的盖度识别精度无明显规律性影响,RGB决策树的盖度识别精度随着草地盖度的增加而增加;光照强度越强,RGB阈值法和HSV判别法对同一草地样方估算的盖度值越小,RGB决策树法估算的盖度值随光照强度的变化没有固定的规律。总体上讲,RGB阈值法和HSV判别法的识别精度较高,RGB决策树法误判率较高,但后者可以识别出非绿色的植物茎、花朵。最后提出了在现有绿色植被像元识别方法的基础上,结合边缘检查算法等图形像素的统计学特征分析方法,能进一步提高草地植被盖度测量的准确率。  相似文献   

7.
拉萨河谷植物物种丰富度空间分布格局及其环境解释   总被引:1,自引:0,他引:1  
拉多  张燕杰  刘杰  崔玲玲  庞有智 《草业学报》2016,25(10):202-211
为研究拉萨河谷植物物种丰富度的空间分布格局,按不同植被类型设置47个样地,每个样地随机设置3个样方,共141个样方。记录维管植物247种,隶属47科、134属。运用基于距离的Moran特征向量图(MEM)和方差分解, 分析环境因子和空间变量对植物物种丰富度空间分布的影响;运用广义可加模型(GAM)对各环境因子与转换物种丰富度(TSR)进行回归分析,同时对各环境因子之间进行相关分析;运用除趋势对应分析(DCA)对样地和物种进行非约束排序,并将环境因子与排序轴之间进行相关分析。结果表明空间结构对拉萨河谷植物物种丰富度分布具有重要作用,而环境因子的空间格局是影响物种丰富度空间分布格局的重要因素;各环境因子与TSR的GAM拟合结果发现气候因子、经纬度和海拔对TSR存在显著的影响;DCA排序结果表明干扰可能是影响物种丰富度空间格局的未测环境因子,DCA第二轴反映了湿度梯度。干扰和湿度可能是拉萨河谷植物物种丰富度空间分布格局的主要影响因素。  相似文献   

8.
We studied short-term (1–3 years) responses of plant species and functional group abundances, richness, evenness, diversity, and similarity following cessation of 25 years (1972–1997) of herbicide application in a remnant of Blackland Tallgrass Prairie in central Texas. Substantial increases in plant cover from 1998 to 2000 were observed for annual forbs (359%–900%), primarily attributable to firewheel (Gaillardia pulchella Foug), but C4 perennial grass cover only marginally increased (22%–23%). These disproportionate increases elicited a directional compositional change in the plant community with dominance shifting from C4 perennial grasses to annual forbs. Species richness, evenness, and diversity decreased from 1998 to 2000 for May, but increased for June, sampling date. Conservation efforts pertaining to remnants of Blackland Tallgrass Prairie need to be cognizant that dramatic short-term effects on vegetation dynamics will occur following cessation of annual herbicide applications, and that enhancement of perennial forbs may require seeding or transplanting species.  相似文献   

9.
The impact of livestock grazing on desert vegetation in Khirthar National Park, Pakistan, was investigated by comparing dry and wet season plant species composition, richness, cover, and a grazing index for quadrats outside (“open”) and inside (“exclosed”) native mammal breeding enclosures that had excluded livestock for 6 years. A total of 93 plant species were recorded in the dry season, 88 species in exclosed quadrats and 50 in open quadrats. While only 5 species were unique to open quadrats, 43 species were found only in the exclosed quadrats. Species richness was higher in the exclosures because of the presence of more grass and herb species, while grazing was higher in the open. After rain, species richness and cover were significantly higher than in the dry season because of the growth of summer ephemeral herbs and grasses, but richness was no longer different between the exclosure and open treatments. Although some herbaceous species may have been adversely affected by livestock grazing, overall species richness suggests strong ecosystem resilience to grazing, with levels no different after seasonal rains regardless of grazing level. Many grass and herb species absent from open sites during the dry season reappeared after rain, which suggests that livestock grazing may eliminate them as the dry season proceeds, but that a soil seed or bud bank persists.  相似文献   

10.
Strip mining in arid ecosystems causes extreme ecological destruction that may take decades to recover. The present study examined the effect of different plant-community rehabilitation treatments on arthropods after strip mining in the arid Namaqualand region of South Africa. Vegetation cover and plant species richness were significantly lower at all rehabilitated sites compared with those at a reference site. Arthropod species richness did not differ amongst the different treatments and the reference site. Except for the most recently rehabilitated site, arthropod abundance in all guilds was higher at all treatments compared with that of the reference site. Overall arthropod abundance was positively correlated to plant cover and negatively correlated to plant species richness, but these vegetation characteristics had no effect on arthropod species richness. This may be explained by a high cover of pioneer plants at the rehabilitated sites, which offer ample food for generalist arthropod taxa. Arthropod community composition differed significantly between treatments. We demonstrate that rehabilitation of ecosystem function after mining in arid systems is a lengthy process, even after implementation of intensive rehabilitation protocols. We also show that arthropod communities provide additional insights into the level of ecosystem recovery otherwise obscured when only considering plant community data.  相似文献   

11.
高原鼢鼠的采食造丘活动影响草地植被群落组成和结构,造成草地植被的空间异质性——土丘和植被斑块。本研究以冬季牧场中不同高原鼢鼠种群密度干扰下的植被性状为研究对象,探索植被群落组成结构对高原鼢鼠不同种群密度干扰的功能性响应。结果表明:植被高度随着鼢鼠种群密度的增加呈显著增加趋势(P<0.05),群落盖度和禾草丰富度呈显著下降趋势(P<0.05),而物种丰富度及杂类草丰富度随鼢鼠种群密度的增加表现出单峰曲线格局。地下总生物量随鼢鼠种群密度的增加呈显著下降趋势(P<0.05),杂类草生物量则表现出相反的趋势,而禾草类生物量表现出先降低后增加的趋势。由此可见,适宜密度的鼢鼠干扰有利于物种丰富度的提高,而低密度和高密度的鼢鼠干扰有利于草地中禾草生物量的提高。  相似文献   

12.
Woody plant encroachment in natural grasslands is a widely documented global phenomenon that alters ecosystem dynamics by altering historic vegetation composition and suppressing herbaceous productivity. Abundant woody plants often suppress native plants sufficiently to establish successional thresholds difficult to reverse without species augmentation. Juniper (Juniperus virginiana L.) is expanding in North American tallgrass prairie, but it is currently unknown if encroachment creates successional restrictions that limit restoration potential. We selected 16 50×50-m sites with juniper canopy cover ranging from zero to approximately 75% in tallgrass prairie near Stillwater, Oklahoma, USA. Juniper trees were removed from 7 of the sites along the gradient of juniper canopy cover. Canopy cover of plant species and herbaceous plant productivity were estimated at each site 1 year before and 1, 2, and 5 years after tree removal. Before trees were removed, plant species richness and productivity declined as juniper canopy cover increased, and plant community composition dissimilarity of reference sites increased as juniper canopy cover increased. These relationships remained consistent on all non-removal sites throughout the study. The first year after juniper removal, species richness increased on all removal sites compared to intact sites and productivity on removal sites increased two years after removal. Plant community dissimilarity between reference sites and juniper removal sites remained relatively high (30–60%) the first two years after tree removal on all removal sites, but dissimilarity was about 22% 5 years after juniper removal. Within 5 years, removal sites were comparable to reference plant communities. Grassland restoration frequently requires species manipulation and additional seeding, particularly when overcoming successional limitations. Juniper encroachment into tallgrass prairie alters plant community species composition and productivity. However, in our study, juniper associated succession limitations were not apparent, and complete autogenic restoration was achieved within 5 years without seeding or species manipulation.  相似文献   

13.
利用样方法对西藏高山嵩草(Kobresia pygmaea)草甸群落进行实地调查,分析了2010-2012年不同强度的牦牛放牧试验对植物群落动态和地上生物量的影响,以期为高寒牧区退化草地的恢复及草地高效利用提供理论指导。结果表明:适度放牧能提高物种多样性、丰富度、均一度和地上生物量,降低植物群落盖度;重度放牧降低植物群落的多样性和生物量;重度延迟放牧能缓减重度放牧对草地的不良影响;相关分析结果表明,植物群落盖度与均匀度、丰富度、植物密度、多样性和地上生物量成正相关。高山嵩草草甸的功能群随着放牧强度的增加而显著变化,其优势功能群多年生根茎型牧草高山嵩草和苔草(Carex moorcroftii)、多年生丛生型牧草紫花针茅(Stipa purpurea)的盖度和地上生物量随着放牧强度增加而下降。  相似文献   

14.
Resource managers and scientists need efficient, reliable methods for quantifying vegetation to conduct basic research, evaluate land management actions, and monitor trends in habitat conditions. We examined three methods for quantifying vegetation in 1-ha plots among different plant communities in the northern Great Basin: photography-based grid-point intercept (GPI), line-point intercept (LPI), and point-quarter (PQ). We also evaluated each method for within-plot subsampling adequacy and effort requirements relative to information gain. We found that, for most functional groups, percent cover measurements collected with the use of LPI, GPI, and PQ methods were strongly correlated. These correlations were even stronger when we used data from the upper canopy only (i.e., top “hit” of pin flags) in LPI to estimate cover. PQ was best at quantifying cover of sparse plants such as shrubs in early successional habitats. As cover of a given functional group decreased within plots, the variance of the cover estimate increased substantially, which required more subsamples per plot (i.e., transect lines, quadrats) to achieve reliable precision. For GPI, we found that that six–nine quadrats per hectare were sufficient to characterize the vegetation in most of the plant communities sampled. All three methods reasonably characterized the vegetation in our plots, and each has advantages depending on characteristics of the vegetation, such as cover or heterogeneity, study goals, precision of measurements required, and efficiency needed.  相似文献   

15.
以宁夏盐池县四墩子荒漠草原沙芦草群落为研究对象,通过室内种子萌发法和地上植被调查法研究了围封对沙芦草群落土壤种子库和地上植被的影响。结果表明:1)围封对沙芦草群落土壤种子库密度具有显著影响,围栏外土壤种子库密度为(1052±273) 粒·m-2,围栏内种子库密度为(1885±100) 粒·m-2 ,围封使土壤种子库密度增加了79.0%。围封后,一年生植物种数减少了8.2%,种子库密度却增加了44.0%;2)围栏外地上物种数28种,围栏内为32种,围封使地上植被植物种数增加了14.0%。其中多年生植物增加,一年生植物减少;3)围封后,沙芦草群落土壤种子库和地上植被的Margalef丰富度指数、Shannon-Wiener指数、Pielou均匀度指数、Simpson优势度指数均有增大趋势,但差异不显著,而其生活型功能群的多样性发生了不同程度的改变;4)围栏内外土壤种子库与其地上植被的Sorensen相似性系数均为中等不相似,封育样地(0.33)略低于未封育样地(0.35)。种子库之间相似性高达0.71,两个样地地上植被之间的相似性为0.62,二者均为中等相似,说明外界干扰对地上植被的影响要大于对种子库的影响。研究结果可为荒漠草原区植被的恢复与治理提供一定的参考。  相似文献   

16.
植物群落特征是评价高原鼢鼠裸露鼠丘植被自然恢复的重要内容。以甘肃碌曲和夏河的高寒草甸为研究对象,研究了高原鼢鼠鼠丘植物群落自然恢复过程中的特征。结果表明,碌曲调查区和夏河调查区的植被盖度,丰富度指数、多样性指数、均匀度指数、总生物量、多年生禾草,莎草科和多年生杂草类的生物量均随高原鼢鼠鼠丘自然恢复年限增加而增加,1、2年生植物生物量随鼠丘恢复年限增加表现为先增加后降低。碌曲调查区鼠丘恢复时植被盖度,植物多样性和生产力均大于夏河调查区。因此高原鼢鼠鼠丘植被随恢复年限增加的变化趋势趋同,但其过程因地点而存在差异,这为青藏高原高原鼢鼠鼠丘植被的自然恢复管理提供了一定的依据。  相似文献   

17.
There is global recognition that sustainable land use requires monitoring that will detect change on a scale that protects the resource. That fundamental necessity is threatened where labor-intensive methods and high labor costs cause sampling deficiencies and increased Type-II error rates (false negatives). Ground-based imaging is a monitoring method that reduces monitoring labor costs. Nadir (vertical) images acquired with common digital cameras can be manually analyzed for cover using free software. We used an innovative field protocol to acquire standardized, freehand, nadir images (samples) of rangeland, then compared point intercept (PI) and image-analysis techniques. Between methods, precision (repeatability) across users was equivalent; cover measurements were often different, and the image-analysis technique took only a third as long to complete. Image analysis has several advantages over PI besides the reduced labor cost: Images are permanent resource records available for reanalysis if data are questioned, if software improves, or if management objectives change; and image analysis is less biased by moving vegetation, moving pointing devices, and bright vegetation color.  相似文献   

18.
Studies on plant phenology and browse capacity require effective methods to rapidly quantify plant dimensions such as tree height, height of maximum canopy diameter, height of first leaves, maximum canopy diameter, and diameter of trunk(s) at height of first leaves. Here we describe a method for estimating tree dimensions and calculating canopy volume using a measuring staff (for calibration), a digital camera and our VolCalc software. The method requires a photograph be taken of the measuring staff placed next to an object whose measurements are to be determined. The two objects must be adjacent to one another in the photograph. For rapid analysis, multiple photographs of different objects can be taken over a short period of time using the measuring staff. The method is not limited to plants and can be used to determine, for example, browser height, height at which browsers feed, and primate resource abundance. The method has been tested in the field and provides a fast and precise tree dimension parameter estimation option, where sampling time is of the essence. Test results compare well to alternative methods currently utilised, showing improved precision and faster field data collection times, which are important to researchers and ecologists.  相似文献   

19.
生境丧失或片段化是物种多样性丧失及物种灭绝原因之一。本文选择密点麻蜥的三种生境类型,优势植物分别是油蒿(Artemisia ordosica Krasch)、羊柴(Hedysarum mongdicum Turcz Var)和麻黄(Ephedra sinica)。对不同生境的密点麻蜥种群密度及优势植物高度、植被盖度、植被丰富度、食物(昆虫)资源量、昆虫丰富度、裸地比例6个生态因子进行调查。计算密点麻蜥密度,采用U检验及因子分析。结果表明密点麻蜥偏爱中等植被高度、盖度及具有一定裸地比例的生境;A样地中食物(昆虫)资源量、昆虫丰富度对被提取的公因子的解释能力非常强,其次是植物丰富度;而其余三个变量的解释能力不是太强。  相似文献   

20.
The Succulent Karoo, one of two arid biodiversity hotspots in the world, is known for its high plant species richness, but little is known about the influence of topography and how it mediates the potentially deleterious effects of grazing. Changes in vegetation species composition, cover and species diversity were examined along piosphere gradients on northerly slopes, bottomlands and low-lying plains on 45 farms. Landscapes differed in the plant speciesand life-form composition, species richness and cover, with the more species-rich, heterogeneous grassy northerly slopes distinct from the plains and bottomlands, which were dominated by Pteronia pallens, Psilocaulon junceum and Drosanthenum spp. with more annual and ephemeral species. Overall, species richness declined linearly with decreasing rangeland condition. A weak grazing effect was detected only on the north-facing slopes, where shrubs and grass decreased with intense grazing. Years of overgrazing have resulted in the widespread dominance of P. pallens, especially on the plains and bottomlands, rendering them insensitive to grazing. The current condition of the northern slopes should be maintained and managed such that palatable species can spread to more degraded areas of the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号