首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Land managers across the western United States are faced with selecting and applying tree-removal treatments on pinyon (Pinus spp.) and juniper (Juniperus spp.) woodland-encroached sagebrush (Artemisia spp.) rangelands, but current understanding of long-term vegetation and hydrological responses of sagebrush sites to tree removal is inadequate for guiding management. This study applied a suite of vegetation and soil measures (0.5 ? 990 m2), small-plot rainfall simulations (0.5 m2), and overland flow experiments (9 m2) to quantify the effects of mechanical tree removal (tree cutting and mastication) on vegetation, runoff, and erosion at two mid- to late-succession woodland-encroached sagebrush sites in the Great Basin, United States, 9 yr after treatment. Low amounts of hillslope-scale shrub (3 ? 15%) and grass (7 ? 12%) canopy cover and extensive intercanopy (area between tree canopies) bare ground (69 ? 88% bare, 75% of area) in untreated areas at both sites facilitated high levels of runoff and sediment from high-intensity (102 mm ? h? 1, 45 min) rainfall simulations in interspaces (~ 45 mm runoff, 59 ? 381 g ? m? 2 sediment) between trees and shrubs and from concentrated overland flow experiments (15, 30, and 45 L ? min? 1, 8 min each) in the intercanopy (371 ? 501 L runoff, 2 342 ? 3 015 g sediment). Tree cutting increased hillslope-scale density of sagebrush by 5% and perennial grass cover by twofold at one site while tree cutting and mastication increased hillslope-scale sagebrush density by 36% and 16%, respectively, and perennial grass cover by threefold at a second more-degraded (initially more sparsely vegetated) site over nine growing seasons. Cover of cheatgrass (Bromus tectorum L.) was < 1% at the sites pretreatment and 1 ? 7% 9 yr after treatment. Bare ground remained high across both sites 9 yr after tree removal and was reduced by treatments solely at the more degraded site. Increases in hillslope-scale vegetation following tree removal had limited impact on runoff and erosion for rainfall simulations and concentrated flow experiments at both sites due to persistent high bare ground. The one exception was reduced runoff and erosion within the cut treatments for intercanopy plots with cut-downed-trees. The cut-downed-trees provided ample litter cover and tree debris at the ground surface to reduce the amount and erosive energy of concentrated overland flow. Trends in hillslope-scale vegetation responses to tree removal in this study demonstrate the effectiveness of mechanical treatments to reestablish sagebrush steppe vegetation without increasing cheatgrass for mid- to late-succession woodland-encroached sites along the warm-dry to cool-moist soil temperature ? moisture threshold in the Great Basin. Our results indicate improved hydrologic function through sagebrush steppe vegetation recruitment after mechanical tree removal on mid- to late-succession woodlands can require more than 9 yr. We anticipate intercanopy runoff and erosion rates will decrease over time at both sites as shrub and grass cover continue to increase, but follow-up tree removal will be needed to prevent pinyon and juniper recolonization. The low intercanopy runoff and erosion measured underneath isolated cut-downed-trees in this study clearly demonstrate that tree debris following mechanical treatments can effectively limit microsite-scale runoff and erosion over time where tree debris settles in good contact with the soil surface.  相似文献   

2.
We investigated soil compaction and hydrologic responses from mechanically shredding Utah juniper (Juniperus ostesperma [Torr.] Little) to control fuels in a sagebrush/bunchgrass plant community (Artemisia nova A. Nelson, Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young/Pseudoroegneria spicata [Pursh] A. Löve, Poa secunda J. Presl) on a gravelly loam soil with a 15% slope in the Onaqui Mountains of Utah. Rain simulations were applied on 0.5-m2 runoff plots at 64 mm · h?1 (dry run: soil initially dry) and 102 mm · h?1 (wet run: soil initially wet). Runoff and sediment were collected from runoff plots placed in five blocks, each containing four microsites (juniper mound, shrub mound, vegetation-free or bare interspace, and grass interspace) with undisturbed or tracked treatments for each microsite type and a residue-covered treatment for grass and bare interspace microsites. Soil penetration resistance was measured at the hill slope scale, and canopy and ground cover were measured at the hill slope and runoff plot scale. Although shredding trees at a density of 453 trees · ha?1 reduced perennial foliar cover by 20.5%, shredded tree residue covered 40% of the ground surface and reduced non–foliar-covered bare ground and rock by 17%. Tire tracks from the shredding operation covered 15% of the hill slope and increased penetration resistance. For the wet run, infiltration rates of grass interspaces were significantly decreased (39.8 vs. 66.1 mm · h?1) by tire tracks, but infiltration rates on juniper mounds and bare interspaces were unchanged. Bare interspace plots covered with residue had significantly higher infiltration rates (81.9 vs. 26.7 mm · h?1) and lower sediment yields (38.6 vs. 313 g · m?2) than those without residue. Because hydrologic responses to treatments are site- and scale-dependent, determination of shredding effects on other sites and at hill slope or larger scales will best guide management actions.  相似文献   

3.
Woodland encroachment on United States rangelands has altered the structure and function of shrub steppe ecosystems. The potential community structure is one where trees dominate, shrub and herbaceous species decline, and rock cover and bare soil area increase and become more interconnected. Research from the Desert Southwest United States has demonstrated areas under tree canopies effectively store water and soil resources, whereas areas between canopies (intercanopy) generate significantly more runoff and erosion. We investigated these relationships and the impacts of tree encroachment on runoff and erosion processes at two woodland sites in the Intermountain West, USA. Rainfall simulation and concentrated flow methodologies were employed to measure infiltration, runoff, and erosion from intercanopy and canopy areas at small-plot (0.5 m2) and large-plot (13 m2) scales. Soil water repellency and vegetative and ground cover factors that influence runoff and erosion were quantified. Runoff and erosion from rainsplash, sheet flow, and concentrated flow processes were significantly greater from intercanopy than canopy areas across small- and large-plot scales, and site-specific erodibility differences were observed. Runoff and erosion were primarily dictated by the type and quantity of ground cover. Litter offered protection from rainsplash effects, provided rainfall storage, mitigated soil water repellency impacts on infiltration, and contributed to aggregate stability. Runoff and erosion increased exponentially (r2 = 0.75 and 0.64) where bare soil and rock cover exceeded 50%. Sediment yield was strongly correlated (r2 = 0.87) with runoff and increased linearly where runoff exceeded 20 mm·h?1. Measured runoff and erosion rates suggest tree canopies represent areas of hydrologic stability, whereas intercanopy areas are vulnerable to runoff and erosion. Results indicate the overall hydrologic vulnerability of sagebrush steppe following woodland encroachment depends on the potential influence of tree dominance on bare intercanopy expanse and connectivity and the potential erodibility of intercanopy areas.  相似文献   

4.
Extensive woodland expansion in the Great Basin has generated concern regarding ecological impacts of tree encroachment on sagebrush rangelands and strategies for restoring sagebrush steppe. This study used rainfall (0.5 m2 and 13 m2 scales) and concentrated flow simulations and measures of vegetation, ground cover, and soils to investigate hydrologic and erosion impacts of western juniper (Juniperus occidentalis Hook.) encroachment into sagebrush steppe and to evaluate short-term effects of burning and tree cutting on runoff and erosion responses. The overall effects of tree encroachment were a reduction in understory vegetation and formation of highly erodible, bare intercanopy between trees. Runoff and erosion from high-intensity rainfall (102 mm · h?1, 13 m2 plots) were generally low from unburned areas underneath tree canopies (13 mm and 48 g · m?2) and were higher from the unburned intercanopy (43 mm and 272 g · m?2). Intercanopy erosion increased linearly with runoff and exponentially where bare ground exceeded 60%. Erosion from simulated concentrated flow was 15- to 25-fold greater from the unburned intercanopy than unburned tree canopy areas. Severe burning amplified erosion from tree canopy plots by a factor of 20 but had a favorable effect on concentrated flow erosion from the intercanopy. Two years postfire, erosion remained 20-fold greater on burned than unburned tree plots, but concentrated flow erosion from the intercanopy (76% of study area) was reduced by herbaceous recruitment. The results indicate burning may amplify runoff and erosion immediately postfire. However, we infer burning that sustains residual understory cover and stimulates vegetation productivity may provide long-term reduction of soil loss relative to woodland persistence. Simply placing cut-downed trees into the unburned intercanopy had minimal immediate impact on infiltration and soil loss. Results suggest cut-tree treatments should focus on establishing tree debris contact with the soil surface if treatments are expected to reduce short-term soil loss during the postcut understory recruitment period.  相似文献   

5.
Infiltration was measured in a western juniper (Juniperus occidentalis Hook.) watershed to characterize the hydrologic processes associated with landscape position. Infiltration rate, runoff, and sediment content were measured with the use of a small-plot rainfall simulator. Study sites were located in each of the four primary aspects (north, south, east, and west). Research sites were located in two ecological sites—South Slopes 12–16 PZ and North Slopes 12–16 PZ. Within aspect, plots were located in three juniper cover levels: high (> 22%), moderate (13%–16%), and low (<3%) juniper canopy cover. During rainfall simulation, water was applied at a 10.2-cm · h−1 rate, levels comparable to an infrequent, short-duration, high-intensity precipitation event. Runoff was measured at 5-min intervals for 60 min. Comparing canopy cover levels, steady-state infiltration rates on control plots (9.0 cm · h−1) was 68% greater than high juniper cover sites (2.87 cm · h−1) and 34% greater than moderate juniper cover sites (5.97 cm · h−1) on south-facing slopes. On north-facing slopes, no differences in infiltration rates were observed between juniper cover levels, demonstrating differential hydrologic responses associated with ecological site. Generally, all water applied to control plots infiltrated. Highest infiltration rates were positively associated with increased surface litter and shrub cover. In addition, depth of water within the soil profile was lowest in high juniper cover plots. This suggests that less water is available to sustain understory and intercanopy plant growth in areas with high juniper cover. Accelerated runoff and erosion in juniper dominated sites (high level) across east-, west-, and south- facing slopes can lead to extensive degradation to the hydrology of those sites. These data suggest that sustained hydrologic processes are achieved with reduced western juniper canopy cover.  相似文献   

6.
Management intensive grazing (MIG) may not maximize plant productivity on rangelands because of morphophysiological traits of grassland vegetation. We examined defoliation and moisture effects on the biomass yield of rhizomatous and caespitose grass pairs that were either phylogenetically similar or of similar agroclimatic adaptation, including two agronomic grasses. From relatively low to high moisture regime adaptation, species pairs included western wheatgrass (Pascopyrum smithii [Rydb.] A. Love) and needle-and-thread (Hesperostipa comata [Trin. & Rupr.] Barkw.), northern wheatgrass (Elymus lanceolatus [Scribn. & J.G. Sm.]) and western porcupine grass (H. curtiseta [Hitchc.] Barkw.), plains and foothills rough fescue (Festuca hallii [Vasey] and F. campestris Rydb.), and smooth and meadow brome (Bromus inermis Leyss. and B. riparius Rehm). Response variables were shoot yield, root-shoot ratio, and water-use efficiency. We hypothesized that caespitose grasses, regardless of their origin or adaptation to agroclimate regime, would respond more determinately in biomass accumulation. Defoliation effects on shoot biomass were more pronounced under high moisture. Low intensity ? high frequency defoliation yielded similarly to deferred controls in all grasses, and the same was true for high-intensity ? low-frequency (HILF) defoliation in 1 rhizomatous grass. Three of the 4 rhizomatous grasses and 1 caespitose grass yielded greater under HILF defoliation compared with high-intensity ? high-frequency defoliation. Caespitose grasses allocated more biomass to roots under low moisture conditions. Water-use efficiency decreased under high moisture conditions and more intense and/or frequent defoliation and peaked in agronomic grasses. Overall, our results suggested that growth patterns corresponded more with phylogenetic similarity as opposed to growth form. A conceptual model from these results showed that across all species, only the introduced bromes generated greater biomass under HILF defoliation, and this may explain why past research consistently concludes that MIG does not enhance plant productivity on rangelands.  相似文献   

7.
Runoff from grazing pasture lands can impact water quality in receiving streams if not well managed. Management consists of conservation practices to reduce runoff and pollutants transport. Simulation models have been effectively used to design and implement these conservation practices. The Agricultural Policy Environmental Extender (APEX), a process-based hydrologic model, was used in this study to simulate the management impacts on surface runoff from three small grazed pasture watersheds located at the North Appalachian Experimental Watersheds near Coshocton, Ohio. Specific objectives of this study were to 1) calibrate the APEX model and test runoff predictions against measured runoff and 2) simulate the long-term impacts of different management scenarios on surface runoff. Results show that the APEX model simulated surface runoff reasonably well with the coefficient of determination (R2) and Nash-Sutcliffe efficiency values varying from 0.49 to 0.72 and from 0.25 to 0.60 for calibration and validation, respectively. After validation, the APEX model was run for 37 yr (1975 ? 2011) for long-term scenarios to analyze the impacts of soil properties and management on surface runoff. Data from this study indicated that keeping the watershed land use as a hay meadow instead of grazing significantly reduced cumulative runoff by 58 ? 67%. Buffer strips of perennial grasses resulted in decreased simulated runoff. To simulate the impacts of soils on runoff, the surface (0 ? 5 cm) soil properties of the toe position were applied to the entire grazed watershed. Subsequently, the increase in soil richness resulted in reduction (≤ 5%) in surface runoff. The simulation results from the present study demonstrate the benefits of hayed meadow over grazed pasture and further predict the decreased trend of runoff due to soil properties change and buffer strips.  相似文献   

8.
Postfire succession in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) ecosystems results in a gradual shift from herbaceous dominance to dominance by shrubs. Determining the quality, quantity, and distribution of carbon (C) in rangelands at all stages of succession provides critical baseline data for improving predictions about how C cycling will change at all stages of succession under altered climate conditions. This study quantified the mass and distribution of above- and belowground (to 1.8-m depth) biomass at four successional stages (2, 6, 20, and 39 yr since fire) in Wyoming to estimate rates of C pool accumulation and to quantify changes in ecosystem carbon to nitrogen (C∶N) ratios of the pools during recovery after fire. We hypothesized that biomass C pools would increase over time after fire and that C∶N ratios would vary more between pools than during succession. Aboveground and live coarse roots (CR) biomass increased to 310 and 17 g C · m?2, but live fine roots (FR) mass was static at about 225 g C · m?2. Fine litter (≤ 1-cm diameter) accounted for about 70% of ecosystem C accumulation rate, suggesting that sagebrush leaves decompose slowly and contribute to a substantial soil organic carbon (SOC) pool that did not change during the 40 yr studied. Total ecosystem C (not including SOC) increased 16 g · m?2 · yr?1 over 39 yr to a maximum of 1 100 g · m?2; the fastest accumulation occurred during the first 20 yr. C∶N ratios ranged from 11 for forb leaves to 110 for large sagebrush wood and from 85 for live CR to 12 for bulk soil and were constant across growth stages. These systems may be resilient to grazing after fire because of vigorous regrowth of persistent bunchgrasses and stable pools of live FR and SOC.  相似文献   

9.
Past seedings of crested wheatgrass (Agropyron cristatum [L.] Gaertn. and A. desertorum [Fisch. ex Link] Schult.) have the potential to persist as stable, near-monospecific stands, thereby necessitating active intervention to initiate greater species diversity and structural complexity of vegetation. However, the success of suppression treatments and native species seedings is limited by rapid recovery of crested wheatgrass and the influx of exotic annual weeds associated with herbicidal control and mechanical soil disturbances. We designed a long-term study to evaluate the efficacy of low-disturbance herbicide and seed-reduction treatments applied together or alone and either once or twice before seeding native species. Consecutive herbicide applications reduced crested wheatgrass density for up to 6 ? 7 yr depending on study site, but seed removal did not reduce crested wheatgrass abundance; however, in some cases combining herbicide application with seed removal significantly increased densities of seeded species relative to herbicide alone, especially for the site with a more northern aspect. Although our low-disturbance treatments avoided the pitfalls of secondary exotic weed influx, we conclude that crested wheatgrass suppression must reduce established density to values much lower than 4 ? 7 plants/m2, a range that has not been obtained by ours or any previous study, in order to diminish its competitive influence on seed native species. In addition, our results indicated that site differences in environmental stress and land-use legacies exacerbate the well-recognized limitations of native species establishment and persistence in the Great Basin region.  相似文献   

10.
Conservation and restoration efforts of native grasslands are being hindered by invasive, exotic plants. Exotic bluestem grasses (Bothriochloa and Dichanthium spp.) have become increasingly invasive throughout the rangelands of the central and southern Great Plains, United States. Accordingly, the aim of this study was to evaluate the efficacy of glyphosate, imazapyr, and imazapyr + glyphosate treatments with or without disking to remove exotic bluestems from a south Texas coastal prairie. We evaluated three different control regimens: 1) herbicide treatments only, 2) herbicide treatments followed by two diskings (H + D), and 3) disking followed by herbicide treatments (D + H). Percent exotic bluestem, native grass, and forb cover were visually estimated at 0 (pre-treatment: May 2006), 20, 52, and 104 wk after treatment (WAT). The herbicide-only and H + D regimens were ineffective at controlling exotic bluestems. However, exotic bluestem cover in herbicide-treated plots of the D + H regimen was significantly lower (P ≤ 0.05) compared to control plots and most treatment plots of the herbicide-only and H + D regimens up to 52 WAT. Control regimens did not notably facilitate an increase in native grass cover from pre-treatment levels, but native grass cover remained the highest, and increased the most, in some imazapyr-treated plots of the herbicide-only and D + H regimens, respectively. In the H + D and D + H regimens, disking resulted in a flush of forb cover (up to 50%) at 52 WAT; yet forb cover was ≤ 5% in these plots by 104 WAT. Exotic bluestem cover recovered back to, or was greater than, pre-treatment levels among most treatment plots across all three control regimens at 104 WAT. This study suggests that follow-up control measures are needed to suppress the re-invasion of exotic bluestems after initial control efforts. Additional studies are needed to evaluate other strategies to control exotic bluestems in rangelands of the central and southern United States.  相似文献   

11.
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and chemically (1.1 L · ha?1 or 3.2 L · ha?1 glyphosate–Roundup Original Max) treated two crested wheatgrass sites in northern Utah followed by seeding native species in 2005 and 2006. The study was conducted at each site as a randomized block split plot design with five blocks. Following wheatgrass-reduction treatments, plots were divided into 0.2-ha subplots that were either unseeded or seeded with native plant species using a Truax Rough Rider rangeland drill. Double-pass disking in 2005 best initially controlled wheatgrass and decreased cover from 14% to 6% at Lookout Pass and from 14% to 4% at Skull Valley in 2006. However, crested wheatgrass recovered to similar cover percentages as untreated plots 2–3 yr after wheatgrass-reduction treatments. At the Skull Valley site, cheatgrass cover decreased by 14% on herbicide-treated plots compared to an increase of 33% on mechanical-treated plots. Cheatgrass cover was also similar on undisturbed and treated plots 2 yr and 3 yr after wheatgrass-reduction treatments, indicating that wheatgrass recovery minimized any increases in weed dominance as a result of disturbance. Native grasses had high emergence after seeding, but lack of survival was associated with short periods of soil moisture availability in spring 2007. Effective wheatgrass control may require secondary treatments to reduce the seed bank and open stands to dominance by seeded native species. Manipulation of crested wheatgrass stands to restore native species carries the risk of weed invasion if secondary treatments effectively control the wheatgrass and native species have limited survival due to drought.  相似文献   

12.
In and around the Great Basin, United States, restoration of shrub steppe vegetation is needed where rangelands are transitioning to annual grasslands. Mechanical seedbed preparation can aid native species recovery by reducing annual grass competition. This study was designed to investigate the nature and persistence of hydrologic and erosion impacts caused by different mechanical rangeland seeding treatments and to identify interactions between such impacts and related soil and vegetation properties. A cheatgrass (Bromus tectorum L.)–dominated site was burned and seeded with native grasses and shrubs in the fall of the year. An Amazon-drill and a disk-chain seeder were used to provide varying levels of surface soil disturbance. An undisturbed broadcast seeding was used as a control. Simulated rainfall was applied to 6 large (32.5-m2) plots per treatment over 3 growing seasons at a rate of 63.5 mm · h-1. Rainfall was applied for 60 minutes under dry antecedent moisture conditions and for 30 minutes, 24 hours later under wet antecedent moisture conditions. The disk-chain created the largest reduction in infiltration and increase in sediment yield, which lasted for 3 growing seasons posttreatment. The Amazon-drill had a lesser impact, which was insignificant after the second growing season posttreatment. Surface soil properties showed little correlation with treatment-induced hydrologic and erosion impacts. Hydrologic recovery was strongly correlated with litter dynamics. The seeding treatments were unsuccessful at establishing seeded plant species, and the site once again became dominated by cheatgrass. A continuous upward trend in biomass production and surface litter cover was observed for all treatments between the beginning and end of the study because of cheatgrass invasion. Although the initial goal of using mechanical seeding treatments to enhance recovery of native grass species failed, cheatgrass production provided sufficient biomass to rapidly replenish surface litter cover necessary for rapid hydrologic stability of the site.  相似文献   

13.
We investigated the effectiveness of rotational and permanent grazing exclosure periods for improving topsoil quality in three commercial farms devoted to cattle breeding in sodic grassland (halophytic steppe) soils of the Flooding Pampa of Argentina. We compared two plots under continuous grazing (C1-C2) with two plots under more than 8 yr of rotational grazing management (R1-R2) and two adjacent plots under permanent grazing exclosure for more than 8 (E1) and 4 (E2) yr. Periodic and permanent grazing exclosure periods caused significant (P < 0.05) and progressive increases in topsoil organic carbon content and organic carbon stock (0 ? 20 cm; from 24 to 61 Mg ha? 1) as follows: (C1 = C2) < (R1 = R2 = E2) < E1 plots. Topsoil physical properties (bulk density, structural instability, and bearing capacity) and salinity were higher (P < 0.05) in C1 and C2 than in the other plots, while infiltration rate was higher in the oldest exclosure (E1) than in the other plots. Topsoil pH decreased from C1-C2 plots (9.5 ? 9.9) to R1-R2 plots (7.3 ? 8.2) to E1-E2 plots (6.5 ? 7.5), while SAR was highest in C1-C2 and lowest in E1 plots. We propose a conceptual model leading to soil recovery in this halophytic steppe community, triggered by organic carbon accumulation induced by grazing management. Short-time grazing exclusion periods (i.e., rotational grazing) are a plausible and low-cost management option to be recommended to the farmers in this highly restrictive environment.  相似文献   

14.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) and other exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe. Revegetation of medusahead-invaded sagebrush steppe with perennial vegetation is critically needed to restore productivity and decrease the risk of frequent wildfires. However, it is unclear if revegetation efforts provide long-term benefits (fewer exotic annuals and more perennials). The limited literature available on the topic questions whether revegetation efforts reduce medusahead abundance beyond 2 or 3 yr. We evaluated revegetation of medusahead-invaded rangelands for 5 yr after seeding introduced perennial bunchgrasses at five locations. We compared areas that were fall-prescribed burned immediately followed by an imazapic herbicide treatment and then seeded with bunchgrasses 1 yr later (imazapic-seed) with untreated controls (control). The imazapic-seed treatment decreased exotic annual grass cover and density. At the end of the study, exotic annual grass cover and density were 2-fold greater in the control compared with the imazapic-seed treatment. The imazapic-seed treatment had greater large perennial bunchgrass cover and density and less annual forb (predominately exotic annuals) cover and density than the untreated control for the duration of the study. At the end of the study, large perennial bunchgrass density average 10 plant ? m? 2 in the imazapic-seed treatment, which is comparable with intact sagebrush steppe communities. Plant available soil nitrogen was also greater in the imazapic-seed treatment compared with the untreated control for the duration of the study. The results of this study suggest that revegetation of medusahead-invaded sagebrush steppe can provide lasting benefits, including limiting exotic annual grasses.  相似文献   

15.
Mechanical cutting and mastication of juniper trees aims to restore grassland habitat by reducing the density of encroaching woody species. However, the associated soil disturbance may also create conduits for invasive species, a risk that must be mitigated by land managers. We characterized herbaceous communities in treated and adjacent untreated areas in a piñon-juniper (Pinus edulis and Juniper monosperma) woodland in northern Arizona 2.5 years after treatment. Untreated plots had 4 × the herbaceous cover (82%) than treated plots (21%). Within treated plots, native species cover (19%) was 10 × higher than invasive species cover (2%). Furthermore, treated plots exhibited greater plant community variability and diversity than untreated plots, driven by an increase in the diversity of native grasses and non-native forbs. No new recruits were Arizona listed noxious weeds, indicating that, at least in the short term, mastication is not producing invasive species hot spots in this piñon-juniper woodland.  相似文献   

16.
Nitrogen (N) availability can strongly influence forage quality and the capacity for semiarid rangelands to respond to increasing atmospheric CO2. Although many pathways of nitrogen input and loss from rangelands have been carefully quantified, cattle-mediated N losses are often poorly understood. We used measurements of cattle N consumption rate, weight gains, and spatial distribution in shortgrass rangeland of northeastern Colorado to evaluate the influence of cattle on rangeland N balance. Specifically, we estimated annual rates of N loss via cattle weight gains and spatial redistribution of N into pasture corners and areas near water tanks, and used previous studies to calculate ammonia volatilization from urine patches. Using measurements of plant biomass and N content inside and outside grazing cages over 13 yr, we estimate that cattle stocked at 0.65 animal unit months (AUM) · ha?1 consumed 3.34 kg N · ha?1 · yr?1. Using an independent animal-based method, we estimate that cattle consumed 3.58 kg N · ha?1 · yr?1 for the same stocking rate and years. A global positioning system tracking study revealed that cattle spent an average of 27% of their time in pasture corners or adjacent to water tanks, even though these areas represented only 2.5% of pasture area. Based on these measurements, we estimate that cattle stocked at 0.65 AUM · ha?1 during the summer can remove 0.60 kg N · ha?1 in cattle biomass gain and spatially redistribute 0.73 kg N · ha?1 to areas near corners and water tanks. An additional 0.17 kg N · ha?1 can be lost as NH3 volatilization from urine patches. Cumulatively, these cattle-mediated pathways (1.50 kg N · ha?1) may explain the imbalance between current estimates of atmospheric inputs and trace gas losses. While NOx emission remains the largest pathway of N loss, spatial N redistribution by cattle and N removed in cattle biomass are the second and third largest losses, respectively. Management of cattle-mediated N fluxes should be recognized as one means to influence long-term sustainability of semiarid rangelands.  相似文献   

17.
Questions have been raised about whether herbaceous productivity declines linearly with grazing or whether low levels of grazing can increase productivity. This paper reports the response of forage production to cattle grazing on prairie dominated by Kentucky bluegrass (Poa pratensis L.) in south-central North Dakota through the growing season at 5 grazing intensities: no grazing, light grazing (1.3 ±  animal unit months [AUM] · ha-1), moderate grazing (2.7 ±  AUM · ha-1), heavy grazing (4.4 ±  AUM · ha-1), and extreme grazing (6.9 ±  AUM · ha-1; mean ± SD). Annual herbage production data were collected on silty and overflow range sites from 1989 to 2005. Precipitation and sod temperature were used as covariates in the analysis. On silty range sites, the light treatment produced the most herbage (3 410 kg · ha-1), and production was reduced as the grazing intensity increased. Average total production for the season was 545 kg · ha-1 less on the ungrazed treatment and 909 kg · ha-1 less on the extreme treatment than on the light treatment. On overflow range sites, there were no significant differences between the light (4 131 kg · ha-1), moderate (4 360 kg · ha-1), and heavy treatments (4 362 kg · ha-1; P &spigt; 0.05). Total production on overflow range sites interacted with precipitation, and production on the grazed treatments was greater than on the ungrazed treatment when precipitation (from the end of the growing season in the previous year to the end of the grazing season in the current year) was greater than 267.0, 248.4, 262.4, or 531.5 mm on the light, moderate, heavy, and extreme treatments, respectively. However, production on the extreme treatment was less than on the ungrazed treatment if precipitation was less than 315.2 mm. We conclude that low to moderate levels of grazing can increase production over no grazing, but that the level of grazing that maximizes production depends upon the growing conditions of the current year.  相似文献   

18.
Grasslands represent a large potential reservoir in storing carbon (C) in plant biomass and soil organic matter via C sequestration, but the potential greatly depends on how grasslands are managed, especially for livestock and wild animal grazing. Positive and negative grazing effects on soil organic carbon have been reported by various studies globally, but it is not known if Canadian grasslands function as a source or a sink for atmospheric C under current management practices. This article examines the effect of grassland management on carbon storage by compiling historical range management facts and measurements from multiple experiments. Results indicate that grazing on grasslands has contributed to a net C sink in the top 15-cm depth under current utilization regimes with a removal rate of CO2 at 0.19 ±  Mg · C · ha-1 · yr-1 from the atmosphere during recent decades, and net C sequestration was estimated at 5.64 ±  Mg · C · ha-1 on average. Naturalization of 2.3 M ha of previously cultivated grasslands in the 1930s has also led to C sequestration in the Canadian prairies but has likely abated as the pool has saturated. Efforts made by researchers, policymakers, and the public has successfully led to the restoration of the Canadian prairies to a healthier state and to achieve considerable C sequestration in soils since their severe deterioration in the 1930s. In-depth analysis of management, legislation, and agricultural programs is urgently needed to place the focus on maintaining range health and achieving more C storage in soils, particularly when facing the reduced potential for further C sequestration.  相似文献   

19.
Rangeland ecosystems cover approximately one-third of the land area in the United States and half of the land area of California. This large land area, coupled with the propensity of grasses to allocate a considerable proportion of their photosynthate belowground, leads to high soil carbon (C) sequestration potential. Annual grasslands typical of the Mediterranean climates of the western United States differ in their life history strategies from the well-studied perennial grasslands of other regions and thus may also differ in their soil C pools and fluxes. In this study we use the literature to explore patterns in soil C storage in annual grass-dominated rangelands in California. We show that soil C is highly predictable with depth. Cumulative soil C content increased to 2–3-m depth in rangelands with a woody component and to at least 1-m depth in open rangelands. Soil C within a given depth varied widely, with C content in the top 1-m depth spanning almost 200 Mg C · ha?1 across sites. Soil C pools were not correlated with temperature or precipitation at a regional scale. The presence of woody plants increased C by an average of 40 Mg · ha?1 in the top meter of soil. Grazed annual grasslands had similar soil C content as ungrazed grassland at all depths examined, although few details on grazing management were available. Soil C pools were weakly positively correlated with clay content and peaked at intermediated levels of aboveground net primary production. Our results suggest that annual grasslands have similar soil C storage capacity as temperate perennial grasslands and offer an important resource for mitigation of greenhouse gas emissions and climate change.  相似文献   

20.
Ventenata (Ventenata dubia [Leers] Coss.) is an exotic annual grass that can invade intermountain rangeland plant communities, where it can form monotypic stands, degrade wildlife habitat, and reduce livestock forage. There is limited information on ventenata control in rangelands as it has only recently been identified as a substantial problem. Imazapic is a pre-emergent herbicide commonly used to control other exotic annual grasses and, therefore, is likely to control ventenata in rangelands. We evaluated five application rates of imazapic (0  175 g ae  ha 1) on ventenata and other exotic annual grass control and plant community response at two rangeland sites in 2 yr (2014 and 2015). Imazapic reduced exotic annual grass (largely ventenata) cover and density, with greater control with increasing imazapic rates. Exotic annual grass density at the highest levels of control (82%−94%) was 184  299 plants  m 2 the first yr after imazapic application. Exotic annual grasses fully recovered in the second or third yr after imazapic application. Bare ground generally increased with imazapic application. However, density of perennial vegetation (grasses and forbs) did not vary among treatments. Perennial vegetation cover generally did not increase with imazapic control of ventenata and other exotic annual grasses. Imazapic can control ventenata; however, even at the highest rates, control was not enough to shift the dominance from exotic annual species to perennial species. Integrating other treatments with imazapic application may be a strategy to improve ventenata control and increase perennial vegetation and will require further investigation. The difficulty and likely expense of achieving substantial and lasting control of ventenata suggest, similar to other exotic annual grasses, that preventing ventenata invasion and dominance should be a high management priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号