首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

? Context

Biomass prediction is important when dealing for instance with carbon sequestration, wildfire modeling, or bioenergy supply. Although allometric models based on destructive sampling provide accurate estimates, alternative species-specific equations often yield considerably different biomass predictions. An important source of intra-specific variability remains unexplained.

? Aims

The aims of the study were to inspect and assess intra-specific differences in aboveground biomass of Pinus brutia Ten. and to fill the gap in knowledge on biomass prediction for this species.

? Methods

Two hundred one trees between 2.3 and 55.8 cm in diameter at breast height were sampled throughout the eastern- and southernmost natural distribution area of P. brutia, in Middle East, where it forms different stand structures. Allometric equations were fitted separately for two countries. The differences in biomass prediction at tree, stand, and forest level were analyzed. The effect of stand structure and past forest management was discussed.

? Results

Between-country differences in total aboveground biomass were not large. However, differences in biomass stock were large when tree components were analyzed separately. Trees had higher stem biomass and lower crown biomass in dense even-aged stands than in more uneven-aged and sparse stands.

? Conclusion

Biomass and carbon predictions could be improved by taking into account stand structure in biomass models.  相似文献   

2.
Afforestation and ecological restoration have often been carried out with fast-growing exotic tree species because of their high apparent growth and yield. Moreover, fast-growing forest plantations have become an important component of mitigation measures to offset greenhouse gas emissions. However, information on the long-term performance of exotic and fast-growing species is often lacking especially with respect to their vulnerability to disturbance compared to native species. We compared carbon (C) storage and C accumulation rates in vegetation (above- and belowground) and soil in 21-year-old exotic slash pine (Pinus elliottii Engelm.) and native Masson pine (Pinus massoniana Lamb.) plantations, as well as their responses to a severe ice storm in 2008. Our results showed that mean C storage was 116.77 ± 7.49 t C ha?1 in slash pine plantation and 117.89 ± 8.27 t C ha?1 in Masson pine plantation. The aboveground C increased at a rate of 2.18 t C ha?1 year?1 in Masson pine and 2.23 t C ha?1 year?1 in slash pine plantation, and there was no significant difference in C storage accumulation between the two plantation types. However, we observed significant differences in ice storm damage with nearly 7.5 % of aboveground biomass loss in slash pine plantation compared with only 0.3 % loss in Masson pine plantation. Our findings indicated that the native pine species was more resistant to ice storm because of their adaptive biological traits (tree shape, crown structure, and leaf surface area). Overall, the native pine species might be a safer choice for both afforestation and ecological restoration in our study region.  相似文献   

3.
Classical allometries determine biomass from measurements of diameter at breast height or volume. Neither of these measurements is currently possible to be derived directly from remote sensing. As biomass estimates at larger scales require remotely sensed data, new allometric relations are required using crown area and/or tree height as predictor of biomass, which can both be derived from remote sensing. Allometric equations were developed from 72 trees semi-randomly selected for destructive sampling in three 100?km2 sentry sites in western Kenya. The equations developed fit the data well with about 85?% of the observed variation in aboveground biomass explained by crown area. Addition of height and wood density as second predictor variables improved model fit by 6 and 2?% and lowered the relative error by 7 and 2?%, respectively. The equation with crown area in combination with height and wood density estimated representative aboveground biomass carbon to be about 20.8?±?0.02?t?C?ha?1; which is about 19?% more than the amount estimated using an allometry with diameter at breast height as predictor. These results form the basis for a new generation of allometries using crown area as a predictor of aboveground biomass in agricultural landscapes. Biomass predictions using crown area should be supported by height and wood density and the application of crown area equations for remote sensing based up-scaling should consider crown interactions with competing or coexisting neighboring trees.  相似文献   

4.
A crown profile model was developed for radiata pine (Pinus radiata D. Don) in Galicia (northwestern Spain). Data from 443 trees located in 56 permanent plots, established by the Unidade de Xestión Forestal Sostible (UXFS) of the University of Santiago de Compostela in plantations of this species in the region, were used. The crowns of the trees were measured by a visual method based on similar triangles. Both simple geometric shapes and mathematical equations were used to describe the crown profiles. As crown profile models usually require variables that are expensive to measure, equations to estimate the maximum crown radius and the height to the maximum crown radius were also developed, using other easily measured tree and stand variables. Several models were fitted using a system of equations approach and accounting for an autocorrelated, heteroscedastic error structure. The selected crown profile model consists of a system of two allometric equations for the crown below (primarily shade needles) and above (primarily sun needles) maximum crown radius. The model explained 88% of the variability in crown radius with a mean error of 0.24 m.  相似文献   

5.
This work focuses on the development of dendrometric algorithms to calculate the volume and total biomass contained in olive trees. This laid the foundation for the use of this methodology as a tool to manage resources from orchards, establishing adequate prediction models for assessing other parameters such as income from raw materials from the cultivation, fruit production, CO2 sinks, and waste materials (residual wood) used for energy or industry. Dendrometry has traditionally been applied to forest trees. However, little research has been conducted on fruit trees because of their heterogeneous structure. This issue was the first step of this research. For this, the form factors were calculated. This relates to the actual volume of the branch with a model volume, calculated as a revolution solid from the base diameter and length. The shape more approximated to 1 was the cylinder model with a mean value of 0.76 and standard deviation (SD) of 0.23. On the other hand, volume equations were obtained for the branches. The distribution of biomass in the tree was analyzed. It is estimated that 40 % of biomass is located in the stem and 60 % in the crown, and most of the crown biomass is concentrated in the first branches (60 %). Afterwards, occupation factors were calculated to relate the wood volume in the crown to its apparent volume, the mean being 0.005 dm3/m3 and SD 0.0025 dm3/m3. Also, equations for predicting the whole wood in the crown were obtained. In this regard, the best results were obtained when the crown diameter was used (R 2 = 0.74). These results could be correlated with the production and quality of the fruit, amount of residual biomass coming from pruning, and LIDAR data, which may indicate a simple, quick, and accurate method for predicting biomass.  相似文献   

6.
Determining the adaptability to abiotic conditions and potential establishment success of tree species needs to be conducted before attempting to use a species in large-scale afforestation programs. In this study, the chemical and physiological performance of four Turkish red pine (Pinus brutia Ten.) provenances was investigated after exposure to artificial cold temperature treatments to determine their adaptability to cold environment for potential use in afforestation programs. Seeds were sown and raised for 24, 28, and 32 weeks and exposed to decreasing temperatures in an artificial freezer. Relative electrolyte leakage, chlorophyll fluorescence, and carbohydrate concentrations were measured to determine the variability between provenances. Results showed that diameter and height growth did not vary with origin for each of the three growth stages measured. Root electrolyte leakage values differed between provenances, confirming that cold stress was effectively causing physiological damages when plants were exposed to temperature at ?15 °C and below. The variability observed in the relationship between provenances and cold hardiness responses can be attributed to tree-to-tree variability within provenances and microsites conditions. There was generally no significant difference in chlorophyll fluorescence between provenances, also attributed to low genetic variation between provenances. Carbohydrate concentrations were also very variable and varied significantly among growth stages and provenances. High-altitude provenances had higher soluble carbohydrates concentrations in several cases, suggesting a relationship between altitude, soluble sugars, and cold hardiness. However, these trends were not consistent; therefore, we suggest that such hypotheses be confirmed through more comprehensive further studies.  相似文献   

7.
Because of global climate change,it is necessary to add forest biomass estimation to national forest resource monitoring.The biomass equations developed for forest biomass estimation should be compatible with volume equations.Based on the tree volume and aboveground biomass data of Masson pine(Pinus massoniana Lamb.) in southern China,we constructed one-,two-and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations.The prediction precision of aboveground biomass estimates from one variable equation exceeded 95%.The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height,although the contributions to regressions were statistically insignificant.For the biomass conversion function on one variable,the conversion factor decreased with increasing diameter,but for the conversion function on two variables,the conversion factor increased with increasing diameter but decreased with increasing tree height.  相似文献   

8.
针对用单一的非线性模型拟合生物量方程会导致小径阶林木的估计明显有偏的问题,以东北落叶松和南方马尾松的地上生物量数据为例,提出采用带截距的非线性方程和分段建模方法来改进对立木生物量的估计,并对二者的预估效果进行了比较。结果表明:两种方法都能有效克服小径阶林木的有偏估计问题,同时对整个模型的预估效果也有一定程度的改善;从对比分析结果看,分段拟合方程的预估效果还要略好一些。  相似文献   

9.
The research described in this paper was performed in the Niepolomice Forest (Southern Poland) in 2001 as part of the Forest Environmental Monitoring and Management System (FOREMMS; 5FP IST) project. The material for the present study consisted of the measurement results of the biomass of Scots pine shoots with needles and needles alone carried out on 113 felled sample trees. The purpose of this study was to construct empirical equations for estimating the foliage biomass of Scots pine from easy to measure parameters. To achieve this aim, the dependence of the foliage biomass of Scots pine on stem diameter, height, age, crown length, basal area increment of the trees was analyzed. Using the biometric characteristics such as: tree diameter at breast height (dbh), basal area increment, age, height, and crown length empirical equations for estimating the foliage biomass of Scots pine reasonably precisely have been established. The created empirical equation gives accurate foliage biomass estimates. The explained variability varies between 65 and 85%, it depends on the number of variables applied in the equation. The equations presented in this paper were created with a view to their possible use in ecological studies where biomass quantity may be used, for example, in modeling carbon circulation in the forest ecosystem. From the point of view of forestry practice, these equations may help to assess biomass production in Scots pine stands.  相似文献   

10.

• Introduction  

The accurate estimation of stem taper and volume are crucial for the efficient management of the forest resources. Compatible segmented polynomial taper and volume equations were developed for Brutian pine (Pinus brutia Ten.), Lebanon cedar (Cedrus libani A. Rich.), Cilicica fir (Abies cilicica Carr.), Scots pine (Pinus sylvestris L.), and Black pine (Pinus nigra Arnold.).  相似文献   

11.
With this study we investigated the effective factors on annual amount of total litterfall and needle litterfall in Pinus brutia forests and estimated them with a regression model based on certain stand parameters. We studied 27 permanent plots representing different stand structure and environmental conditions in South-Western Turkey. Litterfall was collected in three month intervals corresponding to each of four seasons for a three-year period. We found a significant relationship between litterfall and stand properties such as crown closure (%), basal area (m2?ha?1), stand stem volume (m3?ha?1), above-ground biomass (t?ha?1), mean annual volume increment (m3?ha?1?yr?1) and site index (T?=?75). Similar relationships also hold true between litterfall and each of such climatic factors as seasonal mean temperature (°C), relative humidity (%) and temperature/precipitation ratio (dimensionless). The mean annual litterfall considerably varied depending on stand characteristics and certain environmental factors. Both needle litterfall and total litterfall may be predicted for long term by regression models using certain stand parameters. Models developed for litterfall of P. brutia forests in this study may be used for national C inventory in Turkey.  相似文献   

12.
Esen  Derya  Zedaker  Shepard M.  Seiler  John R.  Mou  Pu 《New Forests》2003,25(1):1-10
Herbaceous weeds present amajor obstacle to foresters in the earlyestablishment and growth of Turkish red pine (Pinus brutia Ten.), an important coniferof the semi-arid Mediterranean region. Greatgenetic variability of this pine species indrought resistance has already beenwell-studied. The existence of such variationwithin this species in relation to herbaceousweed competition is unknown. This studyinvestigated the effect of herbaceous weedcompetition on the growth of the seedlings ofTurkish red pine seed sources with differentmoisture regimes in their native sites, usingthe rapid screening technique. Two-month-oldTurkish red pine seedlings were grown inindividual pots in a glasshouse either with orwithout joint goose goat grass (Aegilopscylindrica L.). After two simulatedgrowing seasons, grass competitionsignificantly and progressively reduced pinegrowth. Although mean total pine biomass wasreduced by 71% due to weed competition,seedlings of different pine seed sourcesdisplayed significant differences in growthresponses to the weed treatments: dry site seedsource seedlings generally exhibitedsignificantly greater growth than moist siteseed source seedlings under weed competition. These results suggest that competition fromherbaceous weeds is an important factor inreducing the early growth of Turkish red pineseedlings, and that selection ofcompetition-tolerant seed sources can result insubstantial enhancement of the competitivestatus of this pine species against itsherbaceous competitors in early years.  相似文献   

13.
14.
Fire injury was characterized and survival monitored for 5677 trees >25 cm DBH from five wildfires in California that occurred between 2000 and 2004. Logistic regression models for predicting the probability of mortality 5-years after fire were developed for incense cedar (Calocedrus decurrens (Torr.) Florin), white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), sugar pine (Pinus lambertiana Douglas), Jeffrey pine (P. jeffreyi Balf.), and ponderosa pine (P. ponderosa C. Lawson). Differences in crown injury variables were also compared for Jeffrey and ponderosa pine. Most mortality (70–88% depending on species) occurred within 2 years post-wildfire and had stabilized by year 3. Crown length and crown volume injury variables predicted tree mortality equally well; however, the variables were not interchangeable. Crown injury and cambium kill rating was significant in predicting mortality in all models. DBH was only a significant predictor of mortality for white fir and the combined ponderosa and Jeffrey pine models developed from the McNally Fire; these models all predicted increasing mortality with increasing tree size. Red turpentine beetle (Dendroctonus valens) was a significant predictor variable for sugar pine, ponderosa pine, and Jeffrey pine; ambrosia beetle (Trypodendron and Gnathotrichus spp.) was a significant predictor variable for white fir. The mortality models and post-fire tree survival characteristics provide improved prediction of 5-year post-wildfire tree mortality for several California conifers. The models confirm the overall importance of crown injury in predicting post-fire mortality compared to other injury variables for all species. Additional variables such as cambium kill, bark beetles, and tree size improved model accuracies, but likely not enough to justify the added expense of data collection.  相似文献   

15.

Context   

Turkish red pine (Pinus brutia Ten.) is widespread in the eastern Mediterranean Basin. In the late 1970s, four common gardens were established along steep altitudinal transects extending from the coast to about 1,200 m in the Taurus Mountains (Antalya, Turkey).  相似文献   

16.
Stemflow is a focused point source input of precipitation and nutrients at the base of a tree or plant and can have a significant impact on site hydrology. To date, no known studies have modelled stemflow production for juvenile lodgepole pine (Pinus contorta var. latifolia). Meteorological conditions, tree characteristics, and stemflow were sampled for two juvenile lodgepole pine stands over the course of the 2009 growing season. Step-wise multiple regression was used to assess which meteorological and tree architecture variables influenced stemflow production for each research plot. Once predictor variables were identified, models were produced for each stand and a generic model was produced that applied to both plots. A model employing precipitation depth and crown projection area successfully explained 71.3% of the variation in stemflow production from sampled trees. Stemflow was found to represent 1.8% of the study period rainfall and, although not a large component of the plot-scale canopy water balance, it is an order of magnitude greater than the fractioning of stemflow from mature lodgepole and lodgepole pine dominated forest. Additionally, stemflow funnelling ratios were found to average 22.2 and 24.3 from the two sample plots over the study period with a single tree, single event maximum of 111.7 recorded for a tree with a 3.3 cm bole diameter and a rain depth of 17.4 mm.  相似文献   

17.
Canopy fuel characteristics that influence the initiation and spread of crown fires were measured in forty representative Aleppo pine (Pinus halepensis Mill.) stands in Greece. Aleppo pine canopy fuels are characterized by low canopy base height (CBH) (2.0–6.5 m), while available canopy fuel load (CFL) (0.63–1.82 kg/m2) and canopy bulk density (CBD) (0.07–0.22 kg/m3) values are similar to those of other conifers worldwide. Regression equations for the estimation of canopy fuels were developed based on common stand parameters. Stand basal area was the best-fitted predictor for the estimation of CFL and CBD at stand level, explaining 77 and 74 % of the observed variation, respectively. Regression analysis failed to provide any significant estimates for the CBH. Prediction of canopy fuel characteristics based on stand basal area can be useful in fuel management and fire prevention planning since it and can be easily incorporated into existing forest inventory systems and can be used for the Kyoto protocol requirements of carbon changes in Aleppo pine forests located in Greek sites.  相似文献   

18.
We hypothesized that long-term loblolly pine (Pinus taeda L.) land-use restores SOC stock and lability of a subtropical Cambisol to the original levels of the natural forest (NF). Additionally, we hypothesized that roots are the major contributor to SOC and that soil stores most of the ecosystem total carbon (ETC). We investigated a chronosequence of loblolly pine land-use of 17 (first rotation) and 32 years (second rotation, unthinned or thinned) following clearing of the NF. The original SOC stock to 100 cm of NF (209?±?9.4 Mg C ha?1) was depleted by 22% after 17 years of pine, possibly because of intense soil disturbance and low quantity and quality of the residue inputted during the pine stand implementation. However, the SOC stock was restored to the original stock of NF after 32 years of pine, with the input of above and belowground biomass at harvest of the first rotation possibly playing a role in this recovery. Thinning did not affect SOC stocks after 1 year. The POM-C reduced after 17 years and was not recovered after 32 years. We could not ascertain in 5-year evaluation whether root or litter was the major contributor to SOC. Soil held 72% of the ETC in NF and 48–59% in pine plantations, confirming that it stores most of the ETC. Overall, long-term loblolly pine land-use seems to restore the original soil carbon stock in this subtropical site, regardless of some lability losses.  相似文献   

19.
Using tree data from permanent sample plots and climate data from the ClimateWNA model, mixed-effects height to live crown (HTC) models were developed for three boreal tree species in Alberta, Canada: trembling aspen (Populus tremuloides Michx.), lodgepole pine (Pinus contorta var. latifolia Engelm.) and white spruce (Picea glauca (Moench) Voss). Three model forms, the Wykoff model, a logistic model and an exponential model, were evaluated for each species. Tree height was the most significant predictor of HTC and was used in all models. In addition, we investigated the effects of competition and climatic variables on HTC modelling. Height–diameter ratio and either total stand basal area or basal area of coniferous trees were used as competition measures in the models. Different climate variables were evaluated, and spring degree-days below 0 °C, mean annual precipitation and summer heat–moisture index were incorporated into the aspen, lodgepole pine and white spruce models, respectively. Site index was only significant in lodgepole pine models. Residual variances were modelled as functions of tree height to account for heteroscedasticity still present in the mixed-effects models after the inclusion of random parameters. Based on model fitting and validation results as well as biological realism, the mixed-effects Wykoff models were the best for aspen and white spruce, and the mixed-effects logistic model was the best for lodgepole pine.  相似文献   

20.
The early post-fire development of mycobiota following a crown fire in mountain pine plantations and a surface fire in Scots pine plantations, and in the corresponding unburnt stands in the coastal sand dunes of the Curonian Spit in western Lithuania was investigated. Species numbers in unburnt Pinus mugo and Pinus sylvestris stands showed annual fluctuation, but in the burnt sites, the numbers of fungi increased yearly, especially in the crown fire plots. Both burnt stand types—P. mugo and P. sylvestris—showed strongly significant (two-way ANOSIM; R = 1, p < 0.05) differences in species composition; the differences between unburnt sites were clearly expressed but less significant (R = 0.86, p < 0.05). Fungal species composition of burnt P. mugo and P. sylvestris sites was qualitatively different from that of corresponding unburnt sites (two-way ANOSIM; R ≥ 0.75, p < 0.05). The chronosequence of mycobiota in surface fire burns was less clearly defined than in crown fire sites, reflecting the greater patchiness of impacts of the surface fire. Although both fire types were detrimental or at least damaging to all functional groups of fungi (saprobic on soil and forest litter, wood-inhabiting, biotrophic, and mycorrhizal and lichenized fungi), their recovery and appearance (fructification) patterns varied between the groups and among the burn types. The end of the early post-fire fungal succession (cessation of sporocarp production of pyrophilous fungi) was recorded 3 years after the fire for both crown and surface fire types, which is earlier than reported by other authors. Rare or threatened fungal species that are dependent on fire regime were not recorded during the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号