首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alfaprostal (K 11941), a novel prostaglandin F2 alpha analogue was clinically tested in 24 dioestrous mares, 40 anoestrous mares and 31 postpartum mares, all being given 2 or 3 mg intramuscularly. Blood samples were taken for the determination of plasma progesterone levels and the objective confirmation of luteolytic drug effects. Two hundred and thirty-six mares at the same location were used for comparisons of the rates of pregnancy, early embryonic loss and foaling. Alfaprostol was found to act as a potent luteolytic agent with good oestrus induction, follicular development and normal conception (72.6%) and foaling rate (65.3%). No side effects were observed. Treatments commenced early in the season (October), when only 35% of the anoestrous mares showed elevated progesterone levels, but in 80% of anoestrous mares with baseline progesterone levels, alfaprostol initiated heat and ovulation followed by normal fertility.  相似文献   

2.
A retrospective study on the reproductive performance of 401 artificially inseminated trotter mares during six breeding seasons is presented. Mares, 279 post partum (PP) and 122 maiden and barren, or nonlactating (NL), were inseminated with fresh semen obtained from four fertile stallions of the same breed. Pregnancy rate (PR) of mares inseminated at the foal heat (182/253, 71.9%) was lower, but not significantly different, than the PR (22/26, 84.6%) of mares inseminated for the first time at the second post partum cycle and similar to the PR at the first and second cycle of NL mares (95/112, 77.8% and 25/33, 75.7%, respectively). PR of mares inseminated at the foal heat was higher, but nonsignificantly different, from PR of the post partum mares not pregnant after artificial insemination (AI) at foal heat and inseminated again at the following estrous cycle. The PR after AI at the foal heat was significantly higher than the PR when the AI was performed at the third or later cycle in NL mares (71.9% vs 22.2%, P<0.01). The estrus cycle/pregnancy ratio for the PP mares inseminated, for the first time at the foal heat or at the second heat and for NL mares was, respectively, 1.4, 1.2, 1.3 at first cycle and 1.4, 1.3 and 1.4 at the end of the season or when mares left the stud. The proportion of open mares at the end of the season or when leaving the stud was 7.1% (18/253), 3.8% (1/26) and 4.1% (5/122) for PP mares first inseminated at the first or second post partum cycle and for NL mares, respectively; the total rate of open mares was 6% (24/401). The foaling rate (FR) following conception at the foal heat (72.1%) was not statistically different from the FR following conception at any other cycle (50–100%). Based on the absence of significant differences in fertility at the first post partum estrus cycle versus any other estrus cycle, we conclude that breeding at the foal heat should be advisable.  相似文献   

3.
This study investigated the efficacy of two dosage regimens of a potent GnRH analogue (GnRHa), deslorelin acetate, in inducing ovulation in seasonally anestrous mares. Forty-five seasonally anestrous mares were randomly assigned according to follicular size to one of three treatment groups: control, increasing GnRHa dose, and constant GnRHa dose. Treatment began on February 28 and continued until ovulation or for a maximum of seven treatments. Mares were palpated every other day until a 35 mm follicle was detected, then every day until ovulation or regression of the follicle occurred. Blood samples were taken from five randomly chosen mares in each treatment group and analyzed for LH levels.Twenty percent of mares in both deslorelin treatment groups ovulated, while no control mares ovulated during the treatment period. There was no difference in the number of mares that ovulated between treatment groups. Four of the six mares that ovulated were in transitional anestrus at the initiation of treatment, while only two were in deep anestrus.Concentrations of LH were greater (p=0.0008) in both GnRH-treated groups than in the control mares. Concentrations of LH did not differ between the two GnRH-treated groups until day 12 of treatment, when mares treated with a constant dosage had higher (p=0.0358) levels of LH than those treated with an increasing dosage. It is possible that administration of larger amounts of the GnRH agonist lowered the sensitivity of the pituitary to stimulation by GnRH.Deslorelin acetate did stimulate follicular growth and ovulation in a limited number of anestrous mares. Further investigation into the potential of this short-term implant to shorten the onsent of the breeding season is recommended.  相似文献   

4.
The records of 1630 mare years from 6 Thoroughbred stud farms in south eastern Australia were analysed for the years 1981 to 1986. Overall pregnancy and foaling rates were 83.9% and 69.3%, respectively. When calculated per served oestrous cycle, pregnancy and foaling rates were 54.7% and 43.1%, respectively. Pregnancy and foaling rates were higher (P < 0.001) for mares 3 to 10 years of age than for older mares. There was no difference in the pregnancy rates of maiden, barren and foaling mares. The foaling rate was significantly higher (P < 0.001) in mares that became pregnant during the first served oestrous cycle (77.8%) than in mares that needed two served oestrous cycles to become pregnant (65.4%). Of all diagnosed pregnancies, 19.5% were not completed. Pregnancy loss was lower (P < 0.05) in maiden (12.4%) than in barren (19.7%) or foaling (20.9%) mares. Twins were diagnosed in 7.8% of all pregnancies. If one conceptus was lost without external interference, 84.1% of pregnancies went to term. If one conceptus was manually crushed, 55.9% of pregnancies were maintained. If prostaglandin was used to terminate twin pregnancies, 60% of mares so treated produced foals the following year.  相似文献   

5.
The effects of photoperiod on reproductive activity and hair changes in pony mares were studied in 2 experiments. In experiment I, the effect of a fixed daily photoperiod on the onset of the breeding season was studied in 36 mares from Nov 13, 1973, to June 13, 1974. The 4 treatment groups were as follows: daily photoperiod equivalent to the normal day length (control group); constant light 24 hours a day with no dark (L24:D0 group); 16-hour daily photoperiod with 8 hours of dark (L16:D8 group); and 9-hour daily photoperiod with 15 hours of dark (L9:D15 group). The intervals from beginning of experiment to 1st ovulation of breeding season, to shedding of hair in tufts, and to appearance of a smooth coat were shorter (P less than 0.05) for L16:D8 group (107.1 +/- 11.1, 56.0 +/- 0, and 145.8 +/- 4.0 days, respectively) than for control, L24:D0, and L9:D15 groups and were shorter (P less than 0.05) for L24:D0 group (less than 156.1 +/- 12.2, 99.5 +/- 9.5, and 173.9 +/- 9.9 days, respectively) than for control group (192.1 +/- 3.3, 134.9 +/- 8.9, and 205.0 +/- 0 days, respectively) or L9:D15 group (less than 200.3 +/- 5,8, 150.6 +/- 12.9, and 201.7 +/- 3.3 days, respectively). These intervals were not significantly different between the control group and the L9:D15 group, but fewer (P less than 0.05) mares in the L9:D15 group had at least 1 ovulation by termination of the project. In experiment II, the effect of photoperiod on onset of anestrus was studied in 3 groups of 7 mares each. Mares in group A, as part of a previous experiment, were induced to enter the breeding season earlier than normal by a gradual increase in daily photoperiod beginning on Oct 13, 1972. From Feb 16, 1973, to June 22, 1973, group A mares were maintained at a fixed daily photoperiod of 15 hours 23 minutes. Mares in group B, as part of a previous experiment, were kept under environmental conditions simulating normal conditions in southern Wisconsin. On June 22, 1973 (beginning of the present experiment), the following treatments began: groups A and B were exposed to natural day length. In addition, 7 mares (group C) were allotted from a band of mares that had been exposed to natural day length and were exposed to 15-hour 23-minute daily photoperiod from the beginning of the present experiment (June 22, 1973) to the end (June 22, 1974). The interval to onset of anestrus was longer (P less than 0.05) for group C mares (234.6 +/- 35 days) than for group B mares (133.6 +/- 16.5 days). Significant difference did not exist between group A (144.0 +/- 45.9 days) and group B. A fixed daily photoperiod of 16 or 24 hours induced early onset of the breeding season and early shedding of hair, with development of a smooth coat. A photoperiod of 9 hours retarded the onset of the breeding season. Mares induced to begin the breeding season earlier than normal did not become anestrous earlier than normal. Mares kept on a long daily photoperiod in the fall became anestrous later than normal.  相似文献   

6.
Records of 1,009 pregnancies in 574 foaling, barren and maiden Thoroughbred mares on a single stud farm, over a period of 12 years were examined. The farm is situated in the eastern Cape Province of South Africa, at an elevation of 1,800 m, and in an area of climatic extremes. Records of 604 pregnancies in 249 foaling Thoroughbred mares were examined. For these purposes, those pregnancies in which a mare conceived in the same breeding season during which she had foaled were considered as pregnancies in foaling mares. Pregnancy was confirmed by rectal palpation by a single experienced practitioner. Of the 604 pregnancies examined, conceptus attachment occurred in the horn opposite the previously gravid horn in 345 cases (57%), and in the previously gravid horn in 259 cases (43%; P less than 0.005). Unobserved foetal loss after pregnancy diagnosis amounted to 30 (9%) in the former group, while in the latter group (pregnancy established in the postgravid horn) 46 pregnancies were lost (18%; P less than 0.005). This study confirmed that conceptus attachment tends to occur in the uterine horn opposite the previously gravid horn in foaling Thoroughbred mares conceiving during the same season. A significantly higher incidence of foetal loss accompanied conceptus attachment in the postgravid horn. Of 242 pregnancies in 162 previously barren mares, 95 (39%) occurred in the left uterine horn and 147 (61%) in the right horn (P less than 0.005). The incidence of pregnancy failure in this group was 7%. The side of attachment did not affect the rate of loss. Evaluation of the records of 163 maiden mares revealed that conceptus attachment occurred in the left uterine horn in 58 (36%) pregnancies and in the right horn in 105 (64%) pregnancies (P less than 0.005), which is consistent with previously reported observations. Pregnancy failure was recorded in 4% of maiden mares. Side of attachment did not influence rate of loss in this group.  相似文献   

7.
On December 11, 1974, 15 seasonally anestrous mares were assigned at random to 1 of 3 experimental groups: outdoor-control, indoor-control, or indoor light-treated (a 16-hour photo-period). This experiment was terminated on April 21, 1975. The five mares in the indoor light-treated group ovulated 59.0+/-6.9 days later, which was 74 days earlier (P less than 0.01) than 2 of the 5 outdoor-controls (the other 3 ovulated after April 21 during a subsequent experiment) and 50 days earlier (P less than 0.05) than the indoor-controls. Durations of the 1st estrus for the 3 groups of mares were 13.3+/-3.6, 8.4+/-2.0, and 6.0+/-1.0 days for the indoor light-treated, indoor-control, and outdoor-control groups, respectively. The indoor light-treated mares averaged 4.2 estrous cycles before April 21, the indoor-control mares averaged 1.4 estrous cycles, and 2 of 5 outdoor-control mares ovulated 1 time during the experiment. The peripheral blood luteinizing hormone (LH), estradiol, and progesterone concentrations were minimal during winter anestrous. The hormone changes normally associated with estrous cycle activity in mares--maximal estradiol and luteinizing hormone concentrations near ovulation and maximal progesterone concentration during diestrus--were observed in all mares beginning at the 1st estrus. Hair loss was observed earlier in the light-treated mares, than in either of the other groups. In conclusion, a 16-hour photo-period initiated in early December for anestrous brood mares caused endocrinologically normal estrous cycles to begin within 2 months. This may allow breeding and foaling considerably earlier than normally expected.  相似文献   

8.
Reason for performing study: To improve efficiency at the farm level, a better understanding of how farm management factors impact reproductive performance is important. Objective: To assess reproductive efficiency and effectiveness among Thoroughbred mares in central Kentucky. Methods: A cohort of 1011 mares on 13 farms in central Kentucky was followed during the 2004 mating and 2005 foaling season. Information on farm level practices was collected via interviews with farm managers. Reproductive records were collected for each mare mated to obtain information on mare characteristics. The influence of mare age and status (maiden, foaling, barren) on Days 15 and 40 post mating pregnancy rates, foaling rates and total effective length of the mating season were assessed. The influence of stallion book size on reproductive performance measures was also examined. Results: Per season pregnancy rates on Days 15 and 40 post mating and live foal rate were 92.1, 89.3 and 78.3%, respectively. Per cycle rates for the same time periods were 64.0, 58.3 and 50.8%. There were no significant associations between stallion book size and reproductive performance outcomes. The mean s.d. interval from the beginning of the mating season to the last mating of the mare was 36.5 ± 26.1 days. Conclusions: Mare age had a significant impact on efficiency of becoming pregnant, maintaining pregnancy and producing a live foal. Overall, fertility did not decrease among stallions with the largest book sizes. Total interval length of the mating season can be reduced if managers ensure maiden and barren mares are mated at the beginning of the season and foaling mares are mated at the earliest oestrus after acceptable uterine involution has been achieved. Potential relevance: Measures identified in the study can be used by owners, farm managers and veterinarians to improve mare reproductive performance and identify parameters to assist with the implementation of effective culling practices.  相似文献   

9.
Four seasonally anestrous mares (Standardbred), housed under a nonstimulatory photoperiod of 8 hours light:16 hours dark, were administered gonadotropin-releasing hormone (GnRH) in a pulsatile pattern (50 or 250 micrograms of GnRH/hour) for 8 to 18 days during February and March 1985. Treatment with GnRH, irrespective of dose or month, induced an increase in serum luteinizing hormone from a mean pretreatment value typical of anestrus (0.58 +/- 0.02 ng/ml +/- SE) to 10.84 +/- 1.27 ng/ml on day 8 of GnRH treatment. Ovulation in the 4 mares occurred 8.8 +/- 0.7 days after the initiation of pulsatile GnRH administration. In each instance, ovulation was followed by a functional corpus luteum, as indicated by a luteal phase (defined as the number of days on which serum levels of progesterone were greater than 1.0 ng/ml) which lasted 14.5 +/- 0.6 days. These results indicate that infusion of GnRH in a pulsatile pattern is effective in inducing follicular development and ovulation in anestrous mares in the absence of a stimulatory photoperiod.  相似文献   

10.
Alfaprostol will induce luteolysis in mares with serum progesterone concentrations greater than 1 ng/ml. Serum LH response to alfaprostol in seasonally anestrus mares is dependent on whether the mare is in true anovulatory anestrus or transitional anestrus. The greatest LH increases were in maresin transitional anestrus. No significant LH changes occurred when just the carrier vehicle (propylene glycol) was administered.  相似文献   

11.
In two successive years, the pattern of secretion of thyroxine was compared in seasonally anestrous mares and a subpopulation of mares that exhibited estrous cycles during the nonbreeding season. Blood samples were collected two or three times per week between October and April from a total of 15 mares that exhibited estrous cycles during the nonbreeding season and 21 anestrous mares. Monthly mean concentrations of thyroxine during the period from October through April were greater (p<0.05) in cycling versus anestrous mares. However, it remains to be determined whether continuation of estrous cycles during the nonbreeding season and elevated concentrations of thyroxine are causally related.  相似文献   

12.
Uterine fluid accumulation has been reported after insemination or natural breeding of mares. This retrospective study examined the factors affecting the incidence of uterine fluid after insemination of frozen semen. Specifically, this study determined the association between mare age, reproductive status, fluid accumulation, and pregnancy rates in mares. Records were available from 283 warmblood mares throughout 496 cycles. Mares were divided into maiden, foaling, and barren and age groups of 3 to 9, 10 to 16, and more than 16 years. Mares were inseminated only once with frozen semen within 4 to 8 hours before or after ovulation. Ultrasound examinations were performed 12 to 18 hours after insemination. A depth of at least 20 mm of fluid was considered significant. Mares with less than 20 mm were treated with oxytocin, and those with more than 20mm of fluid were given oxytocin and uterine lavage. Pregnancy determination was performed at 14 to 16 and 30 to 50 days after ovulation. Fluid level of more than 20 mm was recorded in 25% of the cycles. Barren mares and aged mares (10-16 and > 16 years) had a higher incidence of uterine fluid accumulations. Per-cycle pregnancy rate was lower (45%) in mares with uterine fluid than in mares without uterine fluid (51%). This difference was primarily due to the reduction in fertility of mares who were older than 16 years and retained fluid after insemination. Apparently, oxytocin and lavage treatments provided acceptable fertility in the other groups of mares that had uterine fluid.

Introduction

Use of equine frozen semen is accepted by the majority of horse registries. According to several field studies,[1, 2, 3, 4 and 5] insemination of frozen semen has resulted in acceptable pregnancy rates. Postbreeding fluid accumulation is a physiologic inflammation that clears the uterus of foreign material such as excess spermatozoa, seminal plasma, bacteria, and extenders. [6, 7, 8, 9 and 10] Uterine fluid can be easily diagnosed with ultrasonography. [10, 11 and 12] Persistent postbreeding uterine fluid has been associated with a decrease in fertility after natural mating or artificial insemination (AI) of fresh semen. [11, 12 and 13] Predisposing factors to persistent fluid accumulations are reduced myometrial contractions, poor lymphatic drainage, large overstretched uterus, and cervical incompetence. [7, 14 and 15] Normal mares are able to expel uterine fluid quickly after inseminations, whereas susceptible mares accumulate fluid in their uterine lumen for more than 12 hours after breeding or insemination. [10]It is commonly stated that insemination with frozen semen leads to greater post-AI fluid accumulation than insemination with fresh or cooled semen or after natural mating. Apparently, there is only 1 controlled study on this comparison.[7] The authors reported that infusion of frozen semen resulted in a greater inflammatory response than natural breeding. In a field study, [16] 16% of mares naturally mated had persistent postbreeding fluid accumulations compared with a 30% rate reported for mares inseminated with frozen semen. [1 and 2] More recently, Watson et al. [17] reported a postbreeding fluid accumulation rate of 16%, which is identical to that reported for natural mating. [16] It is difficult to compare studies because details of mare selection and insemination or breeding frequencies are not always reported. Obviously, a higher proportion of barren and aged mares in a study would increase the incidence of postbreeding fluid accumulation. [1 and 2]The study presented herein was a retrospective study designed to determine the incidence of postbreeding fluid accumulation in a large number of mares inseminated with frozen semen. Associations were determined between mare age, reproductive status and fluid accumulation, and pregnancy rate in mares with and without uterine fluid accumulation.

Materials and methods

Mares

Records were available from 283 warmblood mares inseminated with frozen semen at the Cristella Veterinary Clinic in Italy during 1998 to 2001. Mares ranging in age from 3 to 20 years were inseminated with semen that was frozen in 10 centers and was from 34 stallions. The broodmare population was subdivided into 3 reproductive groups: 89 maiden mares (mean age, 7.2 years), 106 foaling mares (mean age, 9.4 years), and 87 barren mares (mean age, 11.9 years). Maiden mares older than 7 years were selected with biopsy scores of 1 or 2 only. Barren mares were open for no more than 2 consecutive seasons and had negative cytology and bacteriology scores. Age groups were divided as follows: 3 to 9 years (n = 132), 10 to 16 years (n = 137) and older than 16 years (n = 14). Data from 496 cycles were used. Distribution of the estrous cycles was 172, 157, and 167 in the maiden, foaling, and barren groups, respectively; and 224, 244, and 28 in the youngest, intermediate, and oldest groups, respectively.

Mare reproductive management and artificial insemination protocol

During estrus, all mares underwent a daily ultrasound examination with a 5-mHz transrectal probe (SA 600 Vet; Medison Inc., Seoul, South Korea) until 1 or more 35-mm ovarian follicles were detected. Ovulation was then induced by the intravenous administration of 2000 IU of human chorionic gonadotropin (hCG). Ultrasound examination was performed 12 hours after hCG treatment and then every 4 to 8 hours until ovulation occurred. Mares were inseminated only once within a period of 4 to 8 hours before or after ovulation. The semen used was thawed according to the distribution center's instructions and had the following minimum post-thaw quality requirements: not less than 200 × 106 progressively motile spermatozoa per dose and a minimum of 30% progressive spermatozoal motility. Foaling mares were not inseminated at their first postpartum (“foal heat”) estrous period, because pregnancy rates are recognized to be lower than during the subsequent estrous periods.[18] During the first postpartum estrus, ovarian ultrasound scan examinations were performed every 2 to 3 days until an ovulation was detected. A prostaglandin F2α injection was given 5 days later to short-cycle the mare.

Postinsemination monitoring

An ultrasound examination of the reproductive tract was performed 12 to 18 hours after insemination to detect any intrauterine fluid accumulation. The presence and depth of intrauterine fluid was recorded. Twenty millimeters or more of grade II or III intrauterine fluid[19] was recorded as a significant amount of fluid. Mares with less than 20 mm of fluid were treated with an intravenous injection of 20 IU oxytocin. For mares with more than 20 mm of fluid, oxytocin was administered, and the uterus was flushed daily with buffered saline solution: 1-L aliquots were infused and recovered until the recovered fluid was clear. In these mares, oxytocin treatment was repeated up to 3 times daily. Post insemination treatments were performed for no more than 4 days after ovulation had occurred.Pregnancy diagnosis was performed with ultrasound at 14 to 16 days after ovulation. Scans were then repeated at 30 and 50 days of gestation to confirm the presence in the uterus of an apparently healthy developing conceptus.

Statistical analysis

χ2 Analysis was used to determine the effect of reproductive status and age on the incidence of fluid accumulation. In addition, the influence of persistent uterine fluid accumulation on pregnancy rates per cycle was determined for each reproductive class and age by using χ2 analysis.

Results

The per-cycle pregnancy rate at 14-16 days after ovulation was 49.3% (245/496 cycles). By the end of the season, 245 of 283 mares (86.5%) were confirmed pregnant. Fluid level of at least 20 mm (grade II or III) was recorded in 126 of the 496 cycles (25.4%). Barren mares had a higher (P < .05) incidence of postbreeding fluid accumulation (64/167; 38.3%) than maiden (34/172; 19.7%) and foaling (28/157, 17.8%; Table 1) mares. The incidence of fluid accumulation was also higher in mares older than 16 years (19/28; 67.8%) than those aged 10 to 16 years (69/244; 28.2%) and 3 to 9 years (38/224; 17%). The incidence of uterine fluid was also higher (P < .05) for mares aged 10 to 16 years than those aged 3 to 9 years (Table 2). Overall, the per-cycle pregnancy rate was lower (P < .05) for mares with post-AI fluid accumulations than for those with no uterine fluid or only a small quantity of fluid (57/126, 41.9% vs 188/360, 56.2%). Pregnancy rates were similar (P > .05) for mares with or without uterine fluid when comparisons were made within maiden and barren mare groups. However, more foaling mares became pregnant when no fluid was detected after insemination. Pregnancy rate for this group (68.1%) was higher than that for maiden (44.2%) and barren (44.6%) mares (Table 3). Older mares with uterine fluid accumulations had a lower per-cycle pregnancy rate (36.8%) than mares in the same group but without fluid. Surprisingly, if no fluid was detected, the highest pregnancy rates were in mares older than 16 years ( Table 4).  相似文献   

13.
Horse owners want to have their mares bred as early as possible in the breeding season after February 1. Numerous medical treatments, such as progesterone, dopamine antagonists, and gonadotropin-releasing hormone have been administered to anestrous or transitional mares in an attempt to induce follicular development. Some of these treatments are ineffective or impractical, so there is a need in the horse industry to develop alternative techniques to stimulate follicular development and ovulation early in the breeding season. Twenty transitional mares were assigned to one of two treatment groups. Mares in group 1 (n = 10) served as untreated controls, and mares in group 2 (n = 10) were administered 12.5 mg of purified equine follicle-stimulating hormone (eFSH) (Bioniche Animal Health USA, Inc., Athens, Ga) intramuscularly twice daily for a maximum of 15 consecutive days. Mares were considered to be in transition when the diameter of the largest follicle was ≥25 mm. Once one or more follicles >35 mm were detected, eFSH treatment was discontinued and human chorionic gonadotropin was administered intravenously. The percentage of mares ovulating during the 15-day observation period was compared by means of chi-square analysis. The interval to ovulation and the number of ovulations per mare were compared between the two groups by Student t test. In 8 of 10 mares treated with eFSH follicles developed and ovulation occurred during the 15-day observation period, compared with 0 of 10 control mares. Interval from onset of treatment to ovulation was 7.6 ± 2.4 days for these eight mares. The eight mares were treated for an average of 5.2 ± 1.3 days with eFSH. Thus, the eFSH treatment was effective in advancing the first ovulation of the year in transitional mares.  相似文献   

14.
Recent studies on twinning are reviewed. Multiple ovulations were more frequent in thoroughbreds (19%) than in quarter horses (9%) and Appaloosas (8%). The multiple ovulation rate was reduced approximately 50% in foaling mares compared to barren and maiden mares. There was a high degree of repeatability of double ovulations and twin pregnancies within mares and within family lines.Only one embryo was found in each of 23 pituitary extract-treated mares with multiple, synchronous ovulations (<2 days apart) and in each of 39 brood-farm mares with double, synchronous ovulations. Pregnancy rates (number of mares pregnant, regardless of number of embryos/mare) were significantly higher for double, synchronous ovulations than for single ovulations in artificially stimulated mares (58% vs 38%) and in brood-farm mares (83% vs 54%). The results indicated that ova produced by synchronous, double ovulations are viable and fertilizable (indicated by the higher pregnancy rates), but that one of the resulting embryos is eliminated (indicated by the absence of twins).Synchronous, double ovulations were not recorded in association with any of 107 sets of natrually occurring twins. Most (76%) of the twin sets were associated with one detected ovulation. The remaining twins were associated either with one ovulation, but a large unovulated follicle was present at the time of the last examination (10%), or with asynchronous, double estrous ovulations (14%). Twins originated more frequently (P < .05) from asynchronous, double estrous ovulations (9/57) than from synchronous, double ovulations (0/39).Approximately 50% of the mares in which twin embryos were diagnosed rectally before day 31, had 1 foal. However, mares in which twins were recorded as present at day 32–36 and day 40–42 had a single foal in only 17% and 6% of the mares, respectively. The methods used for intervention when twins were diagnosed were unsatisfactory. Complete termination of pregnancy with a prostaglandin or intrauterine flushing resulted in failure to establish a singleton pregancy during the remaining breeding season in 10/11 mares. Attempts to eliminate one embryo resulted in loss of both embryos in 6/7 mares.  相似文献   

15.
Over four years, four investigators in the Northern Hemisphere treated 413 privately owned transition phase mares between late February and early April, for the purpose of breeding such mares early in the season. Mares received an intravaginal device (CIDR-B) carrying 1.9 g progesterone, for about 12 days. Thereafter mares forming preovulatory follicles >30 mm were either treated with a short acting implant releasing the GnRH analog deslorelin (Ovuplant™) or with 1,500—2,500 IU hCG, or not. Follicle sizes were determined with ultrasonography at admission to the study (i.e. day of CIDR-B insertion), at intervals during treatment, at device removal and in 24 (to 48) hour intervals thereafter to determine the time for treatment to induce and accelerate ovulation and to ovulation, respectively. Pregnancies were determined by ultra-sonography between Days 14 to 18 after breeding, mostly 12 to 14 days after ovulation. Based on the size of the largest follicle at admission, mares were grouped into Classes with a ollicle diameter of 10 mm or less in Class I, and mares with follicles 11-20 mm, 21-30 mm and >30 mm in Classes II, III and IV, respectively. Overall, 80.2% of all mares responded to treatment with estrus and 80.7% ovulated. For mares in Classes I to IV, the rate of mares bred and becoming pregnant was 53.4% and 66.7%, 65.6% and 58.7%, 87.5% and 52.3%, and 75.0% and 52.0%, respectively. The overall pregnancy rate was 55.6% for the first breeding in response to treatment. Mares not assisted with Ovuplant or hCG were bred at a significantly lower rate (<0.0001) and the pregnancy rate was lower, 44.4% vs. 54.2% and 60.5%, respectively. Treatments with Ovuplant or hCG ensured ovulation rates of 96.0 and 84.9% versus 53.3% in unassisted mares overall. Follicle diameters increased significantly with CIDR-B in situ, and progressed after device removal to >30 mm within 4.0 days and to ovulation 5.3 days. Those mares in Class I responding to treatment (ca 60%) did not differ from Class II to IV mares in almost all the parameter evaluated. Significant differences were seen in the UK in response to treatment between years for the percentage of mares showing heat, ovulated, were bred and became pregnant.  相似文献   

16.
Five seasonally anestrous mares were treated with a regimen of gonadotrophin releasing hormone and progesterone in an attempt to induce estrus and ovulation. The treatment induced follicular activity and estrus in all mares. Two of the five mares ovulated but none conceived.  相似文献   

17.
Between February 15 and May 17, 2011, a total of 88 broodmares (10 maiden, 10 barren, and 68 foaling) maintained on pasture in southeast Texas were examined three times weekly (Tuesday, Thursday, Saturday) by transrectal palpation and ultrasonography. On Tuesday or Thursday, mares in estrus with uterine edema, a relaxed cervix, and a dominant follicle ≥34 mm in diameter were alternately assigned to treatment with the following: group (1) 2,500-unit human chorionic gonadotropin (hCG), intravenous; group (2) 1.0-mg BioRelease Histrelin (Biorelease Technologies, Lexington, KY), intramuscular; or group (3) 0.5-mg BioRelease Histrelin, intramuscular. Ovulation was confirmed by ultrasonographic examination. The percentage of mares ovulating within 2 days appeared to be similar between maiden, barren, and foaling mares, so responses for all mares were totaled for analysis. A nonsignificant trend for higher ovulation rates within 2 days was noted for both dose rates of histrelin compared with hCG treatment (31/37, 84%; 34/37, 92%; and 33/36, 92% for groups 1-3, respectively) (P = .45). Ovulatory responses appeared to improve for both products as the season progressed, yet no differences were detected between response rates to histrelin or hCG for any month (P ≥ .50). The use of 1.0- or 0.5-mg BioRelease Histrelin was found to be at least equally effective as hCG treatment for inducing ovulation within 2 days of treatment throughout the breeding season.  相似文献   

18.
Four groups of mares, representing anestrus (AN; n = 8), early transition (ET; n = 7), late transition (LT; n = 8) and estrus (EST; n = 12) were used to examine release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) after a bolus injection of gonadotropin releasing hormone (GnRH) during the transition from anestrus into the breeding season. Estrous mares received GnRH on d 2 or 3 of estrus in the cycle immediately preceding slaughter. Anestrous, ET and LT mares received GnRH exactly 1 wk prior to slaughter. A single injection of GnRH (Sigma LHRH, L-0507, 2.0 micrograms/kg body weight in .9% saline, iv) was given to each mare. Blood samples were collected at -2, h, -1 h, directly prior to GnRH, then 15, 30, 45, 60, 90, 120, 150, 180, 210, 240, 300, 360, 420 and 480 min post-injection. Maximum release of LH and FSH was observed within 30 min after injection of GnRH. Except for the LH response in EST mares, concentrations of both hormones had returned to pre-injection baseline levels within 8 h. Group means for area under the curve (AUC) of concentrations of LH in serum, and the maximum amount (MAX) of LH quantified in serum, post-GnRH, increased (P less than .05) progressively from AN to the breeding season. The AUC and MAX responses for FSH showed a reverse pattern, decreasing (P less than .05) from AN to the breeding season.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
OBJECTIVE: To determine features of an early fetal loss (EFL) syndrome and evaluate potential risk factors for EFL in Thoroughbred broodmares on 4 farms in central Kentucky. DESIGN: Retrospective study. ANIMALS: 288 pregnant broodmares. PROCEDURE: Year-2001 breeding records for 288 Thoroughbred broodmares were examined. Early fetal loss was defined as loss of a fetus that was viable at > or = 40 days of gestation but was subsequently lost by 5 months of gestation. RESULTS: Overall 2001 EFL rate was 25% (73/288), median gestational age at time of fetal loss was 77 days, and median date of loss was May 7. Mares on 1 farm had significantly fewer fetal losses (5%) than mares on the other 3 farms (26 to 35%). Fetal losses were higher for maiden (42%) and barren (42%) mares than for foaling mares (18%). Fetal losses were greater in young than in older mares. Effects of broodmare farm, mare age, and reproductive status were all significant. Fetal losses were not associated with sire used for mating or stud farm. CONCLUSIONS AND CLINICAL RELEVANCE: Greatest risk for EFL occurred during the period from late April to May (ie, in mares bred during February through March). Higher incidence of EFL in maiden and barren mares and lower incidence of EFL on 1 farm suggest management or environmental influences may have affected outcome. Risk factors that should be investigated include environmental differences among farms and differences in management procedures used for lactating versus nonlactating mares.  相似文献   

20.

Standardbred maiden mares are generally stressed and in poor physical condition because of their incorrect management at the end of their racing careers. The purpose of this study was to identify an objective assessment that, similar to body condition score (BCS) determination, is easy to measure and able to confirm or improve fattening status assessment, as well as to ascertain whether a relationship with reproduction efficiency exists in subjects destined for a first-time insemination program. The authors assessed 29 Standardbred maiden mares (7 ± 2 years old) during the breeding season. On January 15 (day 0), the same operator performed the following on all subjects: the first gynecological and ultrasound examination, a BCS assessment (range 0 to 5), and an adiposity objective assessment (i.e., measurement of fat thickness by ultrasound scan). At day 0, all mares were in seasonal anestrous. On ovulation day, all subjects exited the study. Both techniques were shown to be significantly and reciprocally correlated (r = 0.976; P < 0.01) to the first seasonal ovulation in maiden mares (−0.772 and −0.805, respectively, for fat thickness and BCS; P < 0.01). Based on the results obtained, regression equations for the prediction of days to the first seasonal ovulation (y) were created. The best predictive equation was the following: \( {\hbox{y}} = {26}.{714}\;{{\hbox{x}}^3} - {2}0{2}.{44}\;{{\hbox{x}}^2} + {446}.0{4}\;{\hbox{x}} - {195}.{65}\left( {{R^2} = 0.{783};\;{\hbox{SE}} = {17}\;{\hbox{d}};P < 0.0{1}} \right) \), with an independent BCS variable. In conclusion, this study suggests that increasing the plane of nutrition (i.e., flushing), starting approximately 3 weeks before the breeding season, stimulates ovarian activity in stressed maiden mares.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号