首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
漂浮植物对富营养化景观水体的净化效果研究   总被引:16,自引:0,他引:16  
利用软隔离小区试验研究了凤眼莲(Eichhornia crassipes)、黄花水龙(Jussiaen repens L.)、空心莲子草(Alternanthera philoxeroides(Mart.)Griseb.)、水鳖(Hydrocharis dubia(Bl.)Backer.)和四角菱(Trapaquadrispinosa Roxb.)5种不同漂浮植物对富营养化景观水体的净化效果,研究结果表明,经过100天植物处理,5种飘浮植物对水体中总氮的去除率为黄花水龙(63)%>凤眼莲(57%)>水鳖(46%)>四角菱(42%)>空心莲子草(34%),对总磷的去除率为凤眼莲(52%)>黄花水龙(50%)>水鳖(45%)>四角菱(31%)>空心莲子草(22%),其中凤眼莲、黄花水龙处理围区的水质净化效果最好,水体中总氮和总磷的去除率也最高,这与植物自身吸收同化污染水体中氮素、磷素的能力大小及植物根系微生物的作用都有关。凤眼莲、黄花水龙在提高水体透明度方面表现最佳,试验围区在处理40天后水质透明度即可达到1 m以上,而空心莲子草、水鳖和四角菱的试验围区则需要处理60天以后透明度才能达到1 m以上。5种漂浮植物对富营养化景观水体都有较好的净化效果,且易于成活,容易管理,可在今后的水质净化中推广应用。  相似文献   

2.
ABSTRACT

Application of excessive amounts of calcium (Ca) during the production cycle improves the quality and postharvest life of several florist crops. Most bedding plants are fertigated with Ca at 100 to 200 mg L? 1throughout the production cycle, but we do not know the effects of higher Ca concentrations. The objective was to evaluate the effect of application of excessive Ca (≥ 280 mg L?1) supplied during the production cycle on the growth, development, and subsequent postharvest performance of bedding-plant impatiens (Impatiens wallerana Hook. f. ‘Super Elfin White’) under simulated retail conditions. Calcium was applied at 120, 200, 280, 360, and 440 mg L?1 during each fertigation during the growing cycle. The total nitrogen (N) concentration was 150 mg L?1, and the nitrate (NO3 ?)-N to ammonium (NH4 +)-N ratio was 1:1. Application of excessive Ca began 30 d after sowing (22 d after germination) and continued until 60 d after sowing. From day 60 to day 65 only deionized water, as a leach, was applied. From day 65 to day 90, plants were held under shade cloth and irrigated with tap water. Excessive Ca applied during the production cycle decreased shoot dry weight, shoot fresh weight, leaf number, and shoot tissue K concentration at the end of the production cycle. Excessive Ca applied during the production cycle also decreased shoot dry weight, leaf number, and shoot tissue potassium (K) concentration at the end of the postharvest period. Plant height, plant diameter, number of open flowers, and number of unopened flower buds at the end of the production cycle and at the end of the postharvest period were not affected by the amount of Ca applied during the production cycle. It was concluded that excessive Ca applied to bedding-plant impatiens during the production cycle did not benefit plant performance during either the production cycle or the postharvest period.  相似文献   

3.
Domestication of biennial Lepidium campestre L. offers possibilities for more varied crop rotations in cold regions, with increased crop cover during winter. In the first winter after sowing, L. campestre can reduce nitrogen (N) leaching before harvesting in the second year. In this system no soil tillage is needed during the first year, unlike in systems with annual crops. A three-year leaching study on loam soil in southern Sweden revealed significantly (p?<?0.05) lower flow-weighted mean total nitrogen (TN) concentration in drainage water under L. campestre (5.8 mg TN L?1) compared with a control treatment (no catch crop and autumn mouldboard ploughing) (9.6 mg TN L?1). In two years of observations, Lepidium campestre had lower flow-weighted mean TN concentration (6.2 mg L?1) than a mixed Vicia villosa L. (hairy vetch)/Secale cereale (winter rye) catch crop (10.2 mg L?1) and rather similar concentration to a Raphanus sativus (oilseed radish) catch crop (5.7 mg TN L?1), both sown after harvest of the main crop. However, L. campestre appeared to have a negative effect on total phosphorus (TP) leaching, with TP concentration in drainage of 0.05 mg L?1 compared with 0.01–0.02 mg L?1 for the other catch crops and the control.  相似文献   

4.
4种水生植物深度净化村镇生活污水厂尾水效果研究   总被引:1,自引:0,他引:1  
通过设置动态模拟试验,持续进水、出水条件下分析比较了漂浮植物凤眼莲和水浮莲、沉水植物轮叶黑藻和挺水植物黄菖蒲对村镇生活污水厂(一级A标准)尾水深度净化效果,筛选出具有去污效果优势的水生植物,为优化水生植物生态修复工程技术在尾水深度净化中的应用提供依据。结果表明:经水生植物深度净化后,尾水水质得到明显改善,漂浮植物凤眼莲和水浮莲对尾水氮、磷的净化效果优于挺水植物黄菖蒲和沉水植物轮叶黑藻。试验周期内,污水厂尾水总氮、总磷和高锰酸盐指数(CODMn)平均浓度为12.22 mg?L-1、0.38mg?L-1和3.88 mg?L-1,凤眼莲、水浮莲、轮叶黑藻、黄菖蒲和对照各系统的总氮平均去除率分别为46.25%、45.74%、43.41%、38.39%和29.22%,总磷去除率分别为36.84%、34.21%、31.58%、28.95%和26.32%,CODMn去除率分别为42.27%、30.93%、32.47%、32.47%和37.89%。凤眼莲、水浮莲、黄菖蒲和轮叶黑藻生物量净增长率分别为550.5%、418.8%、210.6%和80.3%,凤眼莲生物量净增率最大。各处理系统内凤眼莲、水浮莲、黄菖蒲和轮叶黑藻对尾水氮富集量分别为7.36 g、2.33 g、5.12 g和4.46 g,对磷的富集量分别为0.60 g、0.19 g、0.33 g和0.78 g,凤眼莲富集氮能力优于另外3种水生植物,轮叶黑藻磷富集量高于另外3种水生植物。凤眼莲、水浮莲、黄菖蒲和轮叶黑藻植株吸收作用对尾水总氮去除的表观贡献率分别为15.29%、4.90%、11.17%和11.34%,对尾水总磷去除的表观贡献率分别为50.34%、17.17%、35.24%和76.34%。因此,可利用漂浮植物凤眼莲和沉水植物轮叶黑藻立体复合种养的方式深度净化生活污水厂尾水。  相似文献   

5.
In the course of a series of studies conducted to investigate the long-term behavior of 129I (which has a half-life of 16 million years) in the environment, the concentration of stable iodine (127I) in precipitation, irrigation water and soil water to a depth of 2.5 m in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan, was determined. In the forest plot, the mean iodine concentrations in soil water at all the depths ranged from 0.13 to 0.21 μg L?1, about one-tenth of the values recorded in precipitation (weighted mean 2.1 μg L?1). This finding suggests that the major part of iodine in precipitation was sorbed onto the surface soil horizon under oxidative conditions. In the upland field, the mean iodine concentration in soil water was 2.2 μg L?1 at a depth of 0.2 m and it decreased to 0.34–0.44 μg L?1 at a depth of 0.5 m or more; these concentrations were about one-fifth of that in precipitation. This suggested that the major part of the iodine derived from precipitation was sorbed onto the subsurface soil horizon (at depths between 0.2 and 0.5 m). In the paddy field, during the non-irrigation period, the mean iodine concentrations in soil water at all the depths ranged from 1.8 to 4.8 μg L?1, almost the same values as those recorded in precipitation. During the irrigation period, the mean iodine concentrations at depths of 0.2 and 0.5 m were 18.8 and 16.7 μg L?1, values higher than the 10.9 μg L?1 value recorded in irrigation water and the 11.8 μg L?1 value recorded in ponding water. However, at a depth of 1.0 m or more, the mean iodine concentrations in soil water rapidly decreased from 7.3 to 1.8 μg L?1. These data suggested that a significant amount of iodine flowed out from the paddy field by surface runoff and a considerable amount of iodine that leached to a depth of 0.5 m was retained onto the mildly oxidative soil horizon (2Bw) that lay at depths between 0.5 and 1.0 m. At a depth of 2.5 m in the paddy field, the mean iodine concentration in soil water decreased to 1.8 μg L?1, but this level was much higher than those in the forest plot and upland field at the same depth, which suggested that a significant amount of iodine had leached into the groundwater-bearing layer. There was a negative correlation (r=-0.889) between the Eh of soil and the iodine concentration in soil water (0.2 m depth) of the paddy field. Particularly, when the Eh of soil fell below approximately 150 mV, the iodine concentration rapidly increased to above 10μg L?1. As for the chemical forms of iodine in precipitation, irrigation water, ponding water and soil water during the winter irrigation period in the paddy field with oxidative conditions, 58–82% of iodine consisted of IO? 3 and 17–42% of iodine consisted of I?. In the soil water during the summer irrigation period in the paddy field under reductive conditions, 52–58% of iodine consisted of I?, and 42–47% consisted of IO? 3.  相似文献   

6.
In the greenhouse and container nursery production industry there is potential for runoff of nitrogen (N) and phosphorus (P), which may contaminate surface and groundwater. Since the 1950s constructed wetlands (CWs), as a simple, low-technology method, have been shown to effectively treat agricultural, industrial, and municipal wastewater. We investigated the N and P attenuating potential of three floating hydrophytes planted in a laboratory-scale subsurface flow (SSF) CW system. Over an 8-week period plants were supplied with N and P (0.39 to 36.81 mg·L?1 N and 0.07 to 6.77 mg·L?1 P) that spanned the rates detected in nursery runoff between the discharge and inflow locations of a commercial nursery currently employing CWs. Whole plant dry weight was positively correlated with N and P supplied. Highest N recovery rates were exhibited by water hyacinth (Eichhornia crassipes [Mart.] Solms.) and water lettuce (Pistia stratiotes L.). P recovery rates were similar for water hyacinth, water lettuce, and dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.). These floating hydrophytes can be cultivated in a SSF CW to remediate runoff losses of N and P. The possibility exists for integrating them into a polycultural remediation system that includes emergent aquatic macrophytes for processing and polishing nursery/greenhouse wastewater.  相似文献   

7.
ABSTRACT

Responses of tobacco (Nicotiana tabacum L.) to chloride vary according to tobacco types, cultivars, and methods of fertilization, cultivation, and harvesting used. Until now, research has focused on types other than Oriental. In this work, the effect of chloride concentration (10 to 80 mg L?1) in irrigation water on growth and agronomic and chemical characteristics of Oriental tobacco was evaluated with a three-year (1999–2001) outdoor pot experiment. Whether Oriental tobacco cultivars, aromatic and neutral, respond differently to chloride was also investigated. The results showed that the influence of chloride on growth-development and total cured leaves yield on Oriental tobacco was inconsistent and substantial only in neutral cultivars. The increased cured leaves yield in neutral cultivars with 50 mg Cl L?1 was attributed mainly to the increased size of leaves. Leaf chloride concentration increased linearly with the increase of chloride level in irrigation water, but the leaf chloride concentration and the rate of linear increase were highest in the upper leaves of the plant, and decreased gradually from the upper to the lower leaves. Generally, the optimum chloride level in irrigation water was found to be below 20 mg L?1, whereas the 40 mg L?1 level was the critical upper threshold to avoid adverse effects on Oriental tobacco. The six cultivars showed different accumulation rates of chloride in leaves, and these rates were affected differently by the increased chloride in water. The changes in chemical characteristics examined concerning cured-leaf product quality were minor. The results indicate that one may choose among cultivars, either aromatic or neutral, in order to limit the adverse effects of irrigation with water containing increased chloride concentration.  相似文献   

8.
The sorption and desorption processes of Se(VI) onto non-living Eichhornia crassipes (E. crassipes) and Lemna minor (L. minor) were evaluated. Different pH values of the initial Se solution (20???g?L?1) were tested at static conditions. At dynamic conditions of horizontal flow, biomass-packed columns (BPC) were estimated as prepared (pH 4) and unprepared (pH 6?C7) and at different flow rates. The desorption process was tested using HCl (0.1?M) as the eluent. The maximum Se uptake took place at a pH of 4 for both biomasses. The lowest flow rate improves major Se removal due to the increase in contact time. The Se was desorbed from the biomass with elution efficiencies of 5 and 18?% for E. crassipes and L. minor, respectively. Nevertheless, more time was needed to increase these efficiencies and reach desaturation times. The breakthrough curves showed that unprepared E. crassipes and L. minor BPC at horizontal flow, with a flow rate of 6 and 4?mL?min?1 respectively, had a biomass removal capacity of 0.135 and 0.743???g?g?1 correspondingly. The system of E. crassipes is more efficient, suggesting an ion exchange sorption mechanism. This demonstrates that non-living E. crassipes and L. minor have the capacity to remove Se from very dilute solutions.  相似文献   

9.
In Central Vietnam, and more especially in Thua Thien Hue Province, aquatic plants are used empirically by some farmers as an external source of organic matter to improve fertility of sandy soils. The fertilization capacities of aquatic plant species [Najas indica (Willid.) Cham., Najas minor All., Vallisneria spiralis L. (Michx.) Torr., Hydrilla verticillata (L.f.) Royle, Potamogetum malaianus Miq., Myriophyllum spicatum L., Enteromorpha flexuosa (Wulfen) J. Agardh, Rhizoclonium kerneri Stockmayer, and Eichhornia crassipes (Mart) Solms] were assessed from a pot trial including soils amended with aquatic plants (5 g dry matter kg?1 soil) and soils supplied with increasing rates of urea nitrogen (N) fertilizers. Rice (Oryza sativa L.) at a vegetative stage was used as a convenient bio‐extractor. The fertilization capacity of aquatic plant amendments was calculated from aboveground biomass and from N accumulated in shoots as compared to treatments receiving only inorganic N fertilizers. Najas indica (Willid.) Cham. and Hydrilla verticillata (L.f.) Royle showed the greatest fertilization capacity, equivalent to 170–180 mg urea‐N kg?1 soil as estimated from biomass yield, whereas a lesser fertilization capacity, equivalent to less than 100 mg urea‐N kg?1 soil, was observed for Myriophyllum spicatum L., Enteromorpha flexuosa (Wulfen) J. Agardh, Rhizoclonium kerneri Stockmayer, and Eichhornia crassipes (Mart) Solms. This study provides quantitative data on the fertilization capacity of aquatic plants found in the coastal area of central Vietnam, which can improve this empirical practice and alleviate local agro‐environmental constraints related to the lack of organic matter in farming systems.  相似文献   

10.
A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH 4 + ) decreased from 4.6 to 1.7 mg L?1, nitrate (NO 3 ? ) decreased from 6.8 to 5.3 mg L?1, total N (TN) decreased from 14.6 to 10.1 mg L?1, and total P (TP) decreased from 1.6 to 1.1 mg L?1. Average removal efficiencies (loading basis) for NO 3 ? , NH 4 + , TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH 4 + . Results from mesocosm experiments indicated that NH 4 + was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO 3 ? was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2?C4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH 4 + and P can be maximized in the pond while NO 3 ? requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.  相似文献   

11.
Experimental addition of phosphate to enclosures in an acidified lake in Southern Norway was performed to study the effect on nitrate, pH and labile aluminium along a gradient of phosphate from 4–19 µg P L?1. Nitrate decreased from 180 µg L?1 to below detection limit after three weeks at P-concentrations > 17 µg L?1, due to phytoplankton uptake. pH increased from 4.9 to 5.2, corresponding to a 50% decrease of H+-equivalents from 12 to 6 µg P L?1 due to algal uptake of H+-ions when assimilating NO3 ?-ions. Due to the increased pH and probably also precipitation with phosphate, concentrations of labile aluminium decreased from 150 to 100 µg L?1 within the P-interval 4–19 µg L?1. Algal biomass increased from 0.5 to 6 µg chlorophyll a L?1 along the same P-gradient. The results suggest that moderate P-addition (< 15 µg P L?1 to avoid eutrophication problems) can improve water quality in moderately acidified lakes, and also increase nitrate retention in strongly acidified lakes. In humic lakes, the treatment will be less efficient due to light limitation of primary production and the presence of organic acids.  相似文献   

12.
Suaeda aegyptiaca is an important native annual halophyte in salt-affected soils around coastal areas of the Persian Gulf. In order to study the effects of different levels of saturation paste soil salinity (10, 20, 40, 60, and 80 dS m?1) and nitrogen supply (25, 50, and 75 mg kg?1 N as urea) on growth and physiological characteristic of S. aegyptiaca, a greenhouse factorial experiment in completely randomized design was conducted with three replications. Salinity treatments were established after early growth of plants and nitrogen was applied in two steps. Results showed that increasing salinity up to 20 dS m?1 led to increase in dry weight (DW) of plants and this decreased by increasing salinity. Also, DW of plants was significantly increased by application of 75 mg kg?1 nitrogen. Increasing salinity significantly decreased plant height, chlorophyll index, and total nitrogen content; while proline content and total soluble solids (TSS) were significantly increased. The electrolyte leakage (EL) and sodium concentration were increased under salinity stress. However, further increase in salinity decreased these two parameters. By increasing the nitrogen levels, relative water content (RWC), chlorophyll index, proline, and total nitrogen contents were increased, whereas EL was decreased.  相似文献   

13.
Land application of municipal solid waste (MSW) compost increases soil organic matter content and influences soil physical properties. This study was conducted to measure the effect of compost on the water holding capacity of soil and water status in corn (Zea mays L.) from 1993 to 1995. The soil was a Hubbard loamy sand (sandy, mixed, Udorthentic Haploboroll) cropped to irrigated corn at the Sand Plain Research Farm at Becker, MN. Compost treatments on dry weight basis were 0 and 90 Mg ha?1 yr?1 from 1993 to 1995, and a one time application at 270 Mg ha?1 in 1993. The soil moisture retention curves were generated in 1994 and corn leaf water potential and soil bulk density were measured each growing season. Based on water retention curves, the addition of compost increased the water holding capacity of soil without significant increase in the estimated available water. This was contradicted by field measurements which showed that compared to a fertilized control one compost source at the 270 Mg ha?1 rate in the year of application increased plant water stress by 0.22 MPa, likely due to salt loading. In the year after the application of the 270 Mg ha?1, two compost sources increased soil water content and corn yield 0.14 cm3 cm?3 and 0.9 Mg ha?1 respectively. The yield increase was also associated with a reduction in plant water stress of 0.14 MPa due to one of the compost sources.  相似文献   

14.
Eutrophication of ponds for agricultural use has begun to adversely affect rice production and the residential living environment in Japan. Cultivation of useful terrestrial and aquatic plant species in plant-bed filter ditches enables to treat domestic wastewater in addition to resource recycling and amenity functions. We evaluated the ability of several plant species, Italian ryegrass (Lolium multiflorum Lam.), hanana (Brassica campestris L. var.), African marigold (Tages erecta L.), sorghum (Sorghum vulgare Pers.), kenaf (Hibiscus cannabinus L.), papyrus (Cyperus papyrus L.), and reed (Phragmites communis Trin.), to remove nitrogen and phosphorus from polluted pond water whose N and P concentrations were much lower than those in domestic wastewater. Artificial pond water containing 2.5 mg L-1 of N and 0.5 mg L-1 of P was supplied to ditches at a loading rate of 1.1 g m-2 d-1 for N and 0.21 g m-2 d-1 for P. Italian ryegrass, papyrus, or kenaf in ditches removed N and P more effectively than other plants. The average removal rate of Italian ryegrass in ditches was 0.62 g m-2 d-1 for N and 0.10 g m-2 d-1 for P, that of papyrus 0.81 g m-2 d-1 for N and 0.15 g m-2 d-1 for P, and that of kenaf 0.73 g m-2 d-1 for N and 0.11 g m-2 d-1 for P. The influence of N and P concentrations on the removal rates of Italian ryegrass, papyrus, and kenaf was studied. Concentrations at a removal rate of zero were 0.2–0.3 mg L-1 for N and 0.01–0.03 mg L-l for P. At low concentrations, the plant removal rates increased sharply with the rise in the concentration. When N concentrations exceeded 0.3–0.6 mg L-1 and P concentrations 0.10–0.45 mg L-1, the removal rates were high and less affected by the concentration. It was considered that these plant species could be used most efficiently at the concentrations where removal rates are less restricted.  相似文献   

15.
Two indica rice (Oryza sativa L.) cultivars, viz. ‘Swarna’ and ‘Kalinga III’ were compared for their response to iron (Fe) stress. The cultivars were raised with four Fe levels viz. 0.05, 1, 5, 10 mg L?1 in hydroponic culture. Plant growth, soluble protein, chlorophyll content and phytoferritin of leaves increased significantly with increase in Fe concentration up to 5 mg L?1, but decreased at 10 mg L?1. In contrast, lipid peroxidation, decreased up to 5 mg L?1 then increased at 10 mg L?1. However, at 10 mg L?1 of Fe these parameters were more adversely affected in ‘Swarna’ than ‘Kalinga III’. The later also accumulated relatively more Fe, zinc (Zn), manganese (Mn), and copper (Cu) from the growing medium. Zinc concentrations of the tissue, on the other hand, exhibited the opposite trend. Iron stress may, thus lead to secondary metallic ion stresses and under such situations cultivars like ‘Kalinga III’ will perform better than ‘Swarna’.  相似文献   

16.
ABSTRACT

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the United States, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. The objective was to determine the N concentration and the nitrate (NO3 ??N):ammonium (NH4 +?N) ratio of N source that optimized bedding-plant impatiens growth and flower development. Four N concentrations (3.5, 7, 10.5, and 14 mmol N · L?1) were used in factorial combination with four ratios of NO3 ??N:NH4 +?N (4:0, 3:1, 1:1, and 1:3). Application of treatments was made for 30 d. Then for 10 d only deionized water was applied to reduce salt buildup. Substrate pH was lowest (4.9) with the NH4 +?N source and electrical conductivity (EC) highest, but never > 2.4 dS m?1. Nitrogen concentration and N source displayed an interaction for most growth parameters. Shoot fresh and dry weights and flower bud number were maximized at the 1:3 NO3 ??N:NH4 +?N ratio with a N concentration of 10.5 mmol L?1. However, plant diameter, leaf number, and leaf chlorophyll content responded quadratically to N form ratio, with the 1:1 ratio optimum at a concentration of 10.5 mmol N· L?1.  相似文献   

17.
A nutrient solution experiment was done to evaluate effects of different concentrations of nitrogen (N), phosphorus (P) and potassium (K) on leaf mineral concentrations and some enzymes activity of melon seedlings (Cucumismelo var. inodorus subvar. Khatouni). Different levels of these nutrients including 0, 53, 105, 158 and 210?mg L?1 N; 0, 8, 16, 23 and 31?mg L?1 P; 0, 59, 118, 176 and 235?mg L?1 K, all corresponding to 0, 25, 50, 75 and 100% of their concentrations in Hoagland nutrient solution, were applied to plants. The results showed that the highest leaf nitrate reductase (NR) activity was observed at highest N and P levels, whereas the three highest K levels showed the highest NR activity. The highest leaf peroxidase activity was observed at 8?mg L?1 P, 59?mg L?1 K and 158?mg L?1 N. The leaf catalase activity was highest at zero concentration of P, 158?mg L?1 N and 176?mg L?1 K; however, catalase activity was decreased by increasing P levels. Leaf protein content showed an increasing trend with increasing N, P and K levels of nutrient solution, while there was no significant difference between 158 and 210?mg L?1 N. The highest leaf concentrations of N, P, K and Mg were observed at highest nitrogen, potassium and phosphorus levels of nutrient solution, whereas the highest leaf concentration of Ca were obtained at 53 or 105?mg L?1 N, 176?mg L?1 K and 23–31?mg L?1 P. The highest iron concentration of leaves was obtained from 23 to 31?mg L?1 P, 176?mg L?1 K and 210?mg L?1 N.  相似文献   

18.
Abstract

This investigation examined the growth of Typha latifolia (cattail) callus cells grown in five (0, 11, 22, 33, 44 mg L?1) different phosphorus concentrations. The cells were grown for two successive subcultures on semi‐solid media, and subsequently in suspension culture with the same phosphorus levels. On semi‐solid media, the fresh weight of the cells varied by a maximum of 36% through both subcultures. The 33 mg L?1 phosphorus supplied in the original Gamborgs B5 media promoted the greatest fresh weight of the cells in suspension culture over all other concentrations tested. When grown in suspension culture with 0 and 11 mg L?1 phosphorus, the cells showed a 42 and 29% reduction in fresh weight, respectively. Incubating the cells with 22 and 44 mg L?1 phosphorus caused a 20 and 13% reduction in fresh weight, respectively. In addition, this study compared the phosphorus concentration of callus cells against literature‐reported values of whole cattail plants incubated at similar phosphorus concentrations. Data from this study demonstrate that when the cattail callus cells and whole plants are exposed to similar phosphorus concentrations, the phosphorus concentration in the plant leaves is within the confidence interval ( p ≤ 0.05) of the phosphorus concentration in the cattail callus cells. This suggests that cattail callus cells can be used to predict the concentration of phosphorus in cattail leaves when they are supplied with similar phosphorus levels. If this relationship between callus cells and whole plants is found to be applicable to other marsh plant species, stormwater wetland managers can use callus cells as a rapid method to screen plants for their capacity to absorb phosphorus before the plant is established in a wetland. This can increase the effectiveness of the wetland to absorb unwanted pollutants from the stormwater entering the site.  相似文献   

19.
A water hyacinth (Eichhornia crassipes) chopper cum crusher was developed at College of Technology and Engineering, Udaipur, India to solve the problem of the bulk of freshly harvested water hyacinth during transportation. The performance of the chopper cum crusher was evaluated on the basis of its ability to reduce volume and weight of fresh water hyacinth. Two variables namely feed rate and knife speeds were studied. Relationships were developed between changes in specific volume, knife speed; percent weight loss and feed rates. Weight reduction studies showed that, with the increase in feed rate and knife speed, there was a decrease in weight loss. Maximum weight loss of 33·77% was achieved with the minimum feed rate of 1·0 t h−1 and knife speed of 3·14 m s−1. Regression models were developed to fit the data. The developed machine reduced the specific volume and weight of fresh water hyacinth by up to 64 and 31·54%, respectively, at the recommended feed rate of 1·0 t h−1 and knife speed of 4·71 m s−1.  相似文献   

20.
ABSTRACT

Indian mustard (Brassica juncea Czern) is a promising species for the phytoextraction of zinc (Zn), but the effectiveness of this plant can be limited by iron (Fe) deficiency under Zn-contaminated conditions. Our objectives were to determine the effects of root-applied Fe and Zn on plant growth, accumulation of Zn in plant tissues, and development of nutrient deficiencies for B. juncea. In the experiment, B. juncea was supplied 6 levels of iron ethylenediamine dihydroxyphenylacetic acid (Fe-EDDHA; 0.625 to 10.0 mg L?1) and two levels of Zn (2.0 and 4.0 mg L?1) for 3 weeks in a solution-culture experiment. Nutrient solution pH decreased with decreasing supply of Fe and increasing supply of Zn in solution, indicating that B. juncea may be an Fe-efficient plant. If plants were supplied 2.0 mg Zn L?1, plant growth was stimulated by increases in Fe supply, but plant growth was not influenced by Fe treatments if plants were supplied 4.0 mg Zn L?1. Zinc concentration in roots and shoots was suppressed by increasing levels of Fe in solution. Leaf concentrations of Cu, Mn, and P were suppressed also as Fe supply in solutions increased. Iron additions to the nutrient solution were not effective at increasing the Zn-accumulation potential of B. juncea unless plants were supplied the higher level of Zn in solution culture. Even under these conditions, Fe additions were effective only if supplied at low levels in solution culture (1.25 mg Fe L?1). Results suggest that Fe fertility has limited potential for enhancing Zn phytoextraction by B. juncea, even if plants suffer a suppression in growth from Fe deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号