首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been reported that cyanidin 3-O-glucoside (C3G) is an inhibitor of Helicobacter pylori toxin secretion. C3G is classified as an anthocyanin and is a major component of black rice extract (BRE). The present study aimed to identify a new functional food material to prevent H. pylori infection in Mongolian gerbil model. Toxicity in the liver and kidney were not detected after BRE administration (10 or 50 mg/kg). BRE treatment reduced bacterial colonization in animal gastric tissue, as well as infection signs as observed on the analysis of the hematological data. It was also found that the relative mRNA levels of the inflammatory cytokines were reduced in BRE-treated groups. These findings suggest that BRE acts as a potent inhibitor of H. pylori infection and pathogenesis in Mongolian gerbils. We propose that BRE may be used to manage gastroduodenal diseases caused by H. pylori infection.  相似文献   

2.
Brans of 23 traditional and 12 improved (both red and white) rice varieties in Sri Lanka were screened for anti-amylase and anti-glycation activities in vitro. Varieties which showed the highest inhibitory activities at screening were further investigated for anti-glucosidase and glycation reversing as anti-diabetic properties. The same varieties were studied for selected antioxidant properties. Significantly high anti-amylase and anti-glycation activities were observed for bran extracts of red varieties compared to white varieties at screening. Traditional red rice varieties, Masuran, Sudu Heeneti, Dik Wee and Goda Heeneti, exhibited significant and dose dependent anti-amylase, anti-glycation and glycation reversing activities. These varieties also showed marked antioxidant properties. It is concluded that brans of Sri Lankan traditional red rice varieties Masuran, Sudu Heeneti, Dik Wee and Goda Heeneti may be potential food supplements for diabetes.  相似文献   

3.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

4.
To acquire a better understanding of whether RS influences the dynamics of in vivo starch digestion and seed vigour, the high-RS rice mutant RS4 (RS ca. 10%) and the wild type R7954 were used to investigate total amylase activity, seedling vigour, starch content and starch granule structure during germination. RS4 exhibited similar seed vigour to R7954. Amylose and amylopectin in R7954 showed synchronous degradation throughout the whole process, while amylopectin was hydrolysed significantly faster than amylose in RS4 during the earlier germination stages. The starch residues of RS4 after germination (GD) lost endotherm peaks and showed a special X-ray diffraction pattern with only two peaks at around 16.90° and 21.62°, probably due to remnants of amylopectin and its tight crosslinking with the cell wall. The remaining starch after 10 GD, primarily amylopectin may make a critical contribution to total resistant starch content. These results indicated that RS had no negative impact on seed vigour in rice lines, although RS cannot be hydrolysed by α-amylase from human and animal in vitro. By appropriately increasing the special amylopectin fraction, a new breeding programme of high RS crops and improvement in the eating quality of high RS rice varieties might be achieved.  相似文献   

5.
Multi-element fingerprinting demonstrates some potential for tracing the origin of agricultural products but not for discriminating among crop cultivars and nutrient management (source, rate). With principal component analysis (PCA) and univariate statistics, we examined 19 elements in grains from two winter wheat cultivars (Hereford, Mariboss) grown with different rates of animal manure (AM) or mineral fertilisers (NPK) in a long-term field experiment and two sowing dates (early, timely).Nitrogen, Cd and Mn related to NPK, and Mo and Na to AM. Barium, Fe, and P reflected nutrient rate; these elements increased with nutrient rate regardless of source. Unmanured grains were enriched in Cu. Mariboss was characterized by higher concentrations of Sr, Ba and Sc compared to Hereford with Sr in grain as the main separator. Univariate statistics showed higher concentrations of N, P, Mg, Ba, Cu, Mo and Zn in early sown than in timely sown wheat. Compared with Hereford grains Mariboss was higher in P, Mg, Ba, Cu and Sr but lower in Mn, Mo and Zn. Thus, confounding effects of cultivar, sowing date, nutrient source and rate limits the potential of multi-element analysis in discriminating among agricultural products from different sites and cropping systems.  相似文献   

6.
The effect of thermal processing on the degradation of the phytochemicals in black rice flour by means of fluorescence spectroscopy and degradation kinetics was investigated. In order to investigate the influence of food matrices, a comparative analysis between integral rice flour and different fractions was performed. The preliminary compositional results suggested a higher content in phytochemicals in fraction four of the seven fractions of black rice flour, which was sifting through a sieve with a diameter of 180 μm. The compositional complexity was highlighted by fluorescence spectroscopy. The heat-treatment caused structural changes that led to red- or blue-shifts in maximum emission. The first-order kinetic model was used to describe the mechanism of degradation. The activation energies were 10.07 ± 1.04 kJ/mol for total polyphenolic, 7.26 ± 0.58 kJ/mol for total monomeric anthocyanins and 6.71 ± 1.12 kJ/mol for antioxidant activity in case of integral flour extract. For fraction four extract obtained by, the Ea values were: 3.51 ± 0.53 kJ/mol, 11.49 ± 1.47 kJ/mol, 15.80 ± 1.50 kJ/mol and 19.91 ± 3.27 kJ/mol, respectively. The calculated values of the activation energy revealed higher temperature dependence of total polyphenols in integral flour and of antioxidant activity in fraction four, respectively.  相似文献   

7.
Wheat yield and quality are dependent largely on nitrogen (N) availability. In this study, we performed the first metabolomic analysis of the response to high-N fertilizer during wheat grain development using non-targeted gas chromatography-mass spectrometry (GC–MS). Quality parameter analyses demonstrated that high-N fertilizer application led to a significant increase in grain protein content and improvement in starch and bread-making quality. Comparative metabolomic profiling of six grain developmental stages resulted in identification of 74 metabolites, including amino acids, carbohydrates, organic acids and lipids/alcohol, which are primarily involved in carbon and N metabolism. Under high-N fertilizer treatment, numerous metabolites accumulated significantly during grain development. Principal component analysis revealed two principal components as being responsible for the variances resulting from N-fertilizer treatments. Metabolite–metabolite correlation analysis demonstrated that the high-N treatment group had a greater number of positive correlations among metabolites, suggesting that high-N fertilizer treatment induced a concerted metabolic change that resulted in improved grain development. Particularly, the high-N treatment-mediated significant accumulation of metabolites involved in the TCA cycle, starch and storage protein synthesis could be responsible for the improvement of grain yield and quality. Our results provide new insight into the molecular mechanisms of wheat grain development and yield and quality.  相似文献   

8.
The purpose of the research was to identify the phenolic and flavonoid compounds of seven different traditional pigmented whole rice cultivars grown in the temperate regions of Kashmir so as to study their relationship with in vitro antioxidant capacities. The completely pigmented rice cultivars were found to have higher phenolic, flavonoid, anthocyanin contents and exhibited higher antioxidant capacities than the light colored and sparely colored rice cultivars. A total of 40 compounds had been identified in the analyzed rice cultivars that were found to be distributed in 6 major categories with 6-phenolics, 6-flavonoids, 11-hydroxycinnamic acid derivatives, 7-hydroxybenzoic acid derivatives, 3-anthocyanins and 7-flavonoid glucosides of different flavonoid compounds. Among the free and bound fractions for each cultivars the light and sparsely colored depicted higher content of phenolics and in vitro antioxidant properties in bound faction, while the completely pigmented cultivars showed higher antioxidant properties in free fractions. The anthocyanins quercetin-3-O-galactoside, cyanidin-3-O-rutinoside and pelargonidin-3-O-diglucoside had been identified by LC-MS existing in the free fractions of the analyzed rice cultivars whereas, the free fraction of acetone + H2O possessed higher percentage of phenolic compounds as compared to methanolic extracts and bound fractions. The black colored cultivars possessed higher DPPH scavenging activity and lipid peroxidation inhibition.  相似文献   

9.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

10.
Weedy rice (Oryza sativa) is a close relative of domesticated rice and a noxious weed prevalent in rice fields in world regions where rice is grown. Weedy rice management has remained challenging to farmers, mainly due to the weed's physiological and morphological resemblance to rice cultivars. The introduction of Clearfield® rice provides an alternative solution and an additional tool for integrated weed management. Clearfield® rice-based programs result in the cleanest rice fields in the southern U.S. However, persistent application of the imidazolinone herbicides (imazethapyr, imazamox, and imazapic) in Clearfield® rice raises concerns about the possible evolution of resistance to ALS-inhibitor herbicides in weedy rice and the transfer of resistance trait. The risk of resistant weedy rice evolution is much higher in Asia, Latin America, and other tropical regions where there is no winterkill and rice is planted at least twice each year. Herbicide carryover to rotational crops is also a concern. We summarized the progress of commercialization of Clearfield® rice in 15 countries across the continents of America, Asia and Europe. In some countries, imidazolinone-resistant weedy rice outcrosses have been found abundant, thereby negating the utility of Clearfield® technology. The persistence of imidazolinone herbicide residues in the soil is a concern in regions where multiple crops are planted in a year, or the following year. These challenges should be anticipated by countries that are considering adopting Clearfield® rice technology. Issues associated with gene escape, resistance evolution in weedy rice, and herbicide carryover to rotational crops remain to be resolved. Research to achieve sustainable solutions for weedy rice management, must be continued and intense educational programs for growers must be sustained.  相似文献   

11.
Rice gel is a novel form of processed rice, where gelatinized rice is sheared at high speed to create a gel with unique viscoelastic properties, which can partially replace wheat flour in bakery products. In this study, the viscoelastic properties and bubble structures of rice gels made from two high-amylose rice cultivars and two different ratios of rice to water were studied, focusing on the effect of cooling the gelatinized rice before high-speed shearing (cooled rice gel) as opposed to shearing the gelatinized rice while hot (hot rice gel). Increasing the water content and cooling the rice before high-speed shearing generally decreased the dynamic storage (E′) and loss moduli (E″) in the viscoelasticity measurement and introduced fewer but larger and uniform bubbles in the rice gel. In addition, breads made from cooled rice gel showed significantly higher volume than those made from hot rice gel. The application of mechanical shearing to gelatinized starch has a great potential in creating novel food materials with characteristic textures, and can also be used for the processing of cereals other than rice.  相似文献   

12.
This study sought to investigate the possible inhibition mechanism of red rice polyphenols (RRP) on pancreatic α-amylase (PA) activity. RRP showed strong inhibition against PA activity and the half-inhibitory concentration (IC50) value was 3.61 μg/mL. The fluorescence quenching of PA by RRP was a combination of static quenching and dynamic quenching. RRP could aggregate with PA and the physiochemical properties of the aggregates were closely related to the concentration of RRP. Kinetic analysis suggested that the inhibition mode of RRP on PA was reversible inhibition, which was a mixing of competitive inhibition and noncompetitive inhibition. Molecular docking speculated that RRP could form hydrogen bonds with PA by binding to the catalytic active sites (ASP197, GLU233 and ASP300) and the microenvironments of TRP58 and TRP59 were altered, thus inhibiting PA activity.  相似文献   

13.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

14.
Parboiling involves soaking, steaming, and drying, and soaking is important in achieving desired parboiled rice properties. This study investigated the effects of soaking temperature and commingling on rice properties prior to steaming. Rough rice of four cultivars (Taggart, CL151, XL753, and CL XL745) and their combinations at 1:1 wt ratio were soaked at 65, 70 or 75 °C for 3 h, and dried. Both soaking temperature and difference in onset gelatinization temperature (To) of individual cultivars in commingled rice affected milling and physicochemical properties. The head brown rice yield was greater when the soaking temperature was below but close to the To for individual rice cultivars, but became difficult to predict for commingled rice. Commingled rice consisting of high To rice cultivars required higher soaking temperatures to reduce chalkiness during soaking. The color attributes of commingled rice was predominately affected by the cultivar that exhibited the most change. The gelatinization properties were governed by the low-To cultivar, whereas the pasting properties were more influenced by the high-To cultivar for the commingled rice. Therefore, using commingled rice with a wide range of gelatinization temperature as a feedstock may lead to inconsistent quality of parboiled rice.  相似文献   

15.
16.
Starch is a crucial component in wheat endosperm and plays an important role in processing quality. Endosperm of matured wheat grains contains two distinct starch granules (SG), referred to as larger A- and smaller B-granules. In the present study, 166 Chinese bread wheat cultivars planted in four environments were characterized for variation in SG size. A genome-wide association study (GWAS) using the 90 K SNP assay identified 23 loci for percentage volumes of A- and B-granules, and 25 loci for the ratio of A-/B-granules volumes, distributing on 15 chromosomes. Fifteen MTAs were associated with both the percentage volumes of A-, B-granules and the ratio of A-/B-granules volumes. MTAs IWB34623 and IWA3693 on chromosome 7A and IWB22624 and IWA4574 on chromosome 7B associated with the percentage volumes of A- and B-granules consistently identified in multiple environments were considered to be stable. Linear regression analysis showed a significantly negative correlation of the number of favorable alleles with the percentage volumes of A-granules and a significantly positive correlation between the number of favorable alleles and the percentage volumes of B-granules, respectively. The loci identified in this study and associated markers could provide basis for manipulating SG size to obtain superior noodle quality in wheat.  相似文献   

17.
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76%) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43% (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6% (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74%), with environment (E) responsible for 5–14%. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.  相似文献   

18.
This is the first study describing the fine structure of the main, individual fructan oligosaccharides present in wheat grains. Wheat grain fructan structure was investigated in developing wheat grains and in different tissues of mature grains with liquid chromatography-mass spectrometry. Fructan oligosaccharides with a low degree of polymerization (<5) were mainly of the graminan- and inulin-type in developing wheat grains during the first week after anthesis. Starting from 14 days after anthesis, neo-type fructans, fructans with an internal glucose, were observed for the first time. Several neo-type fructan structures were identified and their portion in the total fructan pool gradually increased during grain development. In the mature kernel, almost no differences were noted between the fructan distributions of wheat flour and two wheat bran fractions enriched in either pericarp or aleurone tissue. Results are related to wheat fructan metabolizing enzymes and the nutritional implications are discussed.  相似文献   

19.
This study aimed at investigating the effects of amylose content (AC) of 0.12–19.00% w/w on dry basis, cooling rate (1, 3, 5, and 9 °C/min), and aging time (24, 48, and 72 h) on structure, physical properties and sensory attributes of rice starch-based puffed products. They had an influence upon the crystalline type, and the relative crystallinity (RC). The thermal and physical properties of starch gels were also determined. Amorphism was found for starch gels with 0.12% AC. The polymorphisms (B and V) and differential scanning calorimetric endotherms were found for those with AC ≥4.00%. The RC, retrogradation enthalpy (ΔHr) and gel hardness increased with AC and aging time. The cooling rate did not affect RC, but increased ΔHr and gel hardness. The higher AC and aging time resulted in higher hardness, fracturability, crispiness and bulk density, but lower expansion ratio and less oiliness of the puffed products. The hardness, fracturability, crispiness and bulk density of puffed products were well correlated with the RC of starch gel.  相似文献   

20.
To provide food and nutrition security for a growing world population, continued improvements in the yield and nutritional quality of agricultural crops will be required. Wheat is an important source of calories, protein and micronutrients and is thus a priority to breed for improvements in these traits. The GRAIN PROTEIN CONTENT-B1 (GPC-B1) gene is a positive regulator of nutrient translocation which increases protein, iron and zinc concentration in the wheat grain. In the ten years since it was cloned, the impacts of GPC-B1 allelic variation on quality and yield traits have been extensively analyzed in diverse genetic backgrounds in field studies spanning forty environments and seven countries. In this review, we compile data from twenty-five studies to summarize the impact of GPC-B1 allelic variation on fifty different traits. Taken together, the results demonstrate that the functional copy of the GPC-B1 gene is associated with consistent positive effects on grain protein, Fe and Zn content with only marginally negative impacts on yield. We conclude that the GPC-B1 gene has the potential to increase nutritional and end use quality in a wide range of modern cultivars and environments and discuss the possibilities for its application in wheat breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号