首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenolic compounds present in native wheat bran are majorly bound to polysaccharides and entrapped in the fibre matrix. Recently, it was demonstrated that the microfluidization process could significantly improve physicochemical properties of wheat bran due to particle size reduction and microstructure modification. The current study provides further evidence that the process also significantly increased the contents of surface-reactive, alkaline and acid hydrolysable phenolics by 280%, 60% and 20%, respectively, after a total of 8 passes through the IC200 and IC87 chambers. Accordingly, the associated antioxidant capacity increased with increase in the extent of the treatment. However, there was a decrease in solvent extractable phenolic contents due to their dispersion in water and loss during the treatment. It is also worth noting that the residues after alkaline and acid hydrolysis still contained a high content of surface-reactive phenolics, which might indicate a significant underestimation of the total phenolic content and antioxidant capacity of wheat bran when using the conventional method based on solvent extraction and alkaline and/or acid hydrolysis.  相似文献   

2.
Corn bran was treated by the microfluidization process and the resulting changes in its microstructure and physicochemical properties were examined. The results showed that the microfluidization process could effectively decrease particle size of corn bran and loosen microstructure of the bran matrix. This led to a significant decrease in bulk density and increases in specific surface area. The swelling capacity, water-holding capacity, oil-holding capacity, and cation-exchange capacity increased by 140%, 90%, 140%, and 90%, respectively, after a total of 8 passes through the IC200 and IC87 chambers. In addition, microscopic analysis revealed a gradual disintegration of original cell wall structure and the dissociation of different bran tissues as the extent of microfluidization treatment increased. Findings of this study highlighted the great potential of the microfluidization process in producing a high-quality fiber ingredient from corn bran.  相似文献   

3.
为准确预测小麦面团流变学特性测定过程中的吸水率,以河南省小麦区域试验参试品种(系)为材料,对各粉路系统出粉量、湿面筋含量、沉淀值和吸水率进行相关性分析.结果表明,各粉路面粉出粉量、湿面筋含量和沉淀值均与吸水率呈显著或极显著相关.以各粉路面粉出粉量为自变量(X),以吸水率为因变量(Y),进行逐步回归分析,建立方程Y=60.967-0.047X1-0.055X5 +0.006X6 +0.055X7.并以不同湿面筋含量对实验结果进行细分,初步总结出不同湿面筋含量所对应的吸水率大概值.  相似文献   

4.
Wheat bran is an undervalued by-product of white flour and has great nutritional potential due to its high content in fibres and bioactive compounds. Micronized bran could be used as a food ingredient to improve the nutritional potential of cereal products, or be used as a starting material for other processes (bioactive compound extraction or bran fractionation). The aim of this work was to find a way to efficiently decrease the particle size of bran. The influence of the grinding temperature (ambient or cryogenic grinding) on the granulometric distribution of particles, their composition, and their microstructure was studied, at lab-scale and pilot-scale. It showed that the intrinsic characteristics of bran (glass transition within intermediate layers at −46 °C) had more influence on its grinding behaviour than the type of grinding device used: the particles size distributions obtained after grinding at lab-scale and pilot-scale were very similar. At both scales, the granulometric curves were narrow for cryogenic grinding, while for ambient grinding they were spread over the whole particle size range. Ultrafine particles were obtained in both ambient and cryogenic conditions. Negative temperatures, by increasing the material’s brittleness, favoured a fast fragmentation of bran: one step of cryogenic grinding allowed a median particle size of nearly 50 μm to be reached, whereas three successive steps of ambient grinding were needed for the same result. On the other hand, ambient temperature favoured the dissociation of the different constituent layers of wheat bran, and produced less composite particles than cryogenic grinding.  相似文献   

5.
Microfluidization followed by density-based separation was employed to extract protein from broken rice by disrupting protein-starch agglomerates. Follow-up enzyme treatments (amylase and glucoamylase) were performed to further improve the purity of the protein-rich fraction. High protein recovery (81.87%) and purity (87.89%) were obtained. The protein composition, solubility, structural properties, and in vitro digestibility of rice proteins prepared by enzyme-assisted microfluidization (EM-RP) and alkaline extraction (AE-RP) were compared. EM-RP was mainly composed of glutelin, which had low solubility and native structure. By contrast, large quantities of prolamin and globulin appeared in the AE-RP except glutelin, leading to the richness of glutamic acid/glutamine, leucine, aromatic and charged amino acids in the AE-RP. Compared to AE-RP, EM-RP showed higher digestibility due to the richness of glutelin (an easy-to-digest protein), as evidenced by higher nitrogen release during pepsin-trypsin digestion. The presence of prolamin (an indigestible protein) in AE-RP decreased protein digestibility although alkaline extraction improved its hydrolysis. These results suggest that enzyme-assisted microfluidization could be an effective technique to non-destructively and selectively extract rice glutelin.  相似文献   

6.
The present study explored the effect of size reduction by superfine grinding on the performance and rheological properties of bran-enriched dough. Coarse (D50 = 328.98 μm) and superfine-ground (D50 = 50.76 and 28.37 μm) wheat brans were incorporated into the wheat dough to replace 10–30% of plain flour. Both fundamental and empirical tests were performed to assess the mixing properties, pasting properties, large deformation rheology, small deformation rheology, and stickiness of the dough. With the increasing amount of bran added, dough water absorption capacity increased, while the dough became less sticky and more rigid. Superfine grinding reduced the water retention capacity of the bran by 17–20%. Dough fortified with the finest bran (D50 = 28.37 μm) showed an overall better stability and uniaxial extensibility. However, the results suggested that superfine grinding not necessarily improve every aspect of dough performance, particularly the pasting properties. High peak and final viscosity were observed for dough fortified with superfine bran, indicating their end products, such as noodle, might exhibit high stickiness after cooking, and a high degree of starch retrogradation. Results of this study contributed to a better understanding of the modification effect of superfine grinding on dietary fibre.  相似文献   

7.
Whole wheat products have gained popularity in recent years due to the health and nutritional benefits, with Asian salted noodles as one formulation. However, there is a general perception of decreased product quality and sensory acceptance of whole wheat noodles This study examined changes to sensory properties, texture (tensile and compressive strength), color, and cooking loss of noodles prepared from blends of wheat flour and bran that underwent five forms of hydro, thermal, pressure and their combined treatments: autoclaving, extrusion, jet-cooking, puffing, and roasting. Including the control (bran without processing) all six treatments were deemed palatable by sensory panel evaluation despite having statistically significant differences in physiochemical and sensory properties. For instance, 10 of the 22 sensory properties demonstrated significant differences among treatments. Bran processing tended to result in weaker (tensile and compressive strength) and stickier noodles while allowing for greater uptake of water during cooking.  相似文献   

8.
Fluctuations of environmental conditions increase variability in both grain yield and quality of wheat (Triticum aestivum L.). In order to evaluate stability, different stability parameters of the static or the dynamic concept can be applied, which could be negatively correlated. While correlation analysis of the mean performance between traits is common, correlations between stability estimates for quality traits have not been investigated, to the best of the authors’ knowledge. Therefore, indirect, rheological and baking traits, and grain yield from two datasets were analysed, and the mean performance, each three stability parameters of the two different concepts (static and dynamic) were calculated over all environments within each dataset.Results showed that stability parameters of the same concept were significantly positively correlated for almost all traits. Between the stability concepts, there was only one significant negative correlation, indicating that no trade-off between the two stability concepts exists. A trade-off between stability and mean performance occurred only for five traits, suggesting only a weak trade-off between stability and mean performance, allowing the development of cultivars that are of both stable and of high quality. Clusters of traits that showed similar stability could be identified but were not consistent across stability parameters and datasets.  相似文献   

9.
Rice bran is a rich source of valuable nutrients and has potential for high-value applications. Endogenous lipases catalyze the hydrolysis of rice bran oil to free fatty acids, which initiates lipid oxidation. The evaluation of the success of rice bran stabilization processes in terms of the degree of lipid oxidation and shelf-life has so far relied on the measurement of free fatty acid content over a storage period of 3–6 months. In the present study, a photometric and a titrimetric pH-stat method for direct lipase activity measurement immediately after debranning were adapted to rice bran. The photometric method was further applied to determine rice bran lipase/esterase inactivation kinetics, which are useful to optimize stabilization treatments in order to prevent overprocessing and retain maximum level of nutrients. Rice bran was heat-treated in a specialized, hermetically sealable reactor at controlled holding times (5–40 min), temperatures (70–145 °C) and moisture contents (10–20%). Temperature dependency of the lipase/esterase inactivation rate could be described by the Arrhenius equation. Empirical findings on the importance of moisture content for effective rice bran stabilization could be quantified. Furthermore, the results demonstrate the great potential of the method to predict the shelf-life of stabilized rice bran without time-consuming storage tests.  相似文献   

10.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

11.
Milling of wheat produces co-products rich in dietary fiber, micronutrients and phytochemicals which can be used to integrate healthy functional foods. In the study different co-products including bran, shorts, and red dog were identified by physicochemical and functional analyses. The results showed that the fat, protein and starch contents decreased in order of red dog > shorts > bran (P < 0.05). The ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, water and oil holding capacities (WHC, OHC) were in order bran > shorts > red dog, respectively (P < 0.05). Antioxidant capacity was in order red dog > shorts > bran (P < 0.05). The bran was selected as the co-product with the highest fiber that was finely grounded to four different fractions (>355, 250–355, 180–250, <180 μm) and they were characterized more detail. The fat, protein and starch contents decreased with increasing bran particle size (P < 0.05). The ash, crude fiber, NDF, ADF, hemicellulose and WHC and OHC increased with the increasing bran particle size (P < 0.05). DPPH radical scavenging activity increased with increasing particle size (P < 0.05). The bran fractions 250–355 and >355 μm can be used as high fiber ingredients rich in antioxidants to generate functional foods.  相似文献   

12.
Rye and wheat brans are valuable sources of bioactive compounds, which could be used for the development and commercialization of high added value functional ingredients such as dietary antioxidants. The aim of this study was to evaluate antioxidant potential of rye and wheat bran using different polarity solvents. Cereal brans were ground to four different particle size fractions and extracted at 10.3 MPa pressure and 80 °C temperature by consecutive application of hexane, acetone and methanol:water (80:20%). The highest extract yield was obtained from rye bran using methanol-water; particle size in most cases had a significant effect. Antioxidant potential of extracts was assessed by ABTS+•, DPPH scavenging, ORAC and total phenols content (TPC) assays. Extraction solvent had a major influence on TPC and antioxidant activity of the extracts. The most active extracts were obtained using methanol:water; rye bran extracts, in general, were stronger antioxidants than wheat bran extracts. For the majority of assays, reduction of particle size resulted in higher antioxidant activity values. However, ABTS+• scavenging was found to decrease by decreasing particle size of rye bran used for extraction.  相似文献   

13.
Wheat bran is the main by-product during wheat flour processing. Although wheat bran is rich in the bioactive compounds and antioxidant capacity, it is not widely utilized in its natural state. To improve the antioxidant and nutritional properties of wheat bran, a dominant strain, Enterococcus faecalis M2, was screened from lactic acid bacteria (LAB) isolated from various foods. Following solid state fermentation, the soluble dietary fiber content of wheat bran nearly quadrupled compared to the raw material. Total proportion of phenols, flavonoids, alkylresorcinols, along with the antioxidant capacity and free radical scavenging rate were significantly improved, particularly the ferulic acid content increased by 5.5 times. Additionally, the free amino acid content increased with degradation of wheat bran protein, whereas the level of anti-nutrient phytic acid decreased. The results of this study could provide an effective method for biological modification of wheat bran, which further enhance the health benefit and utilization of bran.  相似文献   

14.
Most analytical studies on polyphenols in cereals refer to compounds determined in aqueous-organic extracts and alkali hydrolysates, but an appreciable amount of polyphenols bound to cell wall constituents may remain insoluble in the residues of extraction and alkali hydrolysis. The main objective of this work was to determine if sulphuric acid hydrolysis may release significant amounts of polyphenols to be considered for analytical and nutritional studies. HPLC/MS analyses of polyphenols were performed in methanol–acetone extracts, alkali and sulphuric acid hydrolysates of wheat flour, bran and a pool of cereals of the diet. The amount of polyphenols found in the acidic hydrolysates (200–1600 mg/100 g) was higher than in alkali hydrolysates (0.2–372 mg/100 g). Lower amount of polyphenols were found in the methanol–acetone extracts (44–160 mg/100 g). Hydroxybenzoic, caffeic, cinammic, ferulic and protocatechuic acids were the main constituents of the hydrolysates. The contribution of cereals to the intake of dietary polyphenols in Spain was estimated around 360 mg/person/day (65 mg of extractable and 295 mg nonextractable polyphenols).  相似文献   

15.
Wheat bran is an important source of dietary fiber but also contains considerable amounts of phytic acid, which is known to impair mineral absorption. The present study was conducted to investigate the phytic acid reduction in coarse and fine wheat bran by fermentation with the different levels of bakers' yeast (3, 6 and 9%) for 8 h at 30 °C, incubation with the different levels of barley malt flour (2.5, 5.0, 7.5 and 10.0%) for 8 h at pH 5.2 and 55 °C, and autoclaving at the different pH levels (pH 5.0, 4.5, 4.0 and 3.5) adjusted with acetic acid for 2 h. The phytic acid content of the wheat bran was effectively reduced by all treatments, and the phytic acid lost was in the range of 88.4–96.9%. Without addition of yeast or malt flour, or autoclaving without pH adjustment, the phytic acid content of the bran samples was reduced at most to 44.9% of the initial amounts under the investigated conditions. Increasing the concentration of yeast or malt flour or decreasing the pH towards 3.5 did not enhance the phytic acid reduction. The most reduction occurred after 2 h of yeast fermentation and malt flour incubation, and after 30 min of autoclaving, which made up 92–98% of the total phytic acid loss. Extending the treatment periods contributed nominally to further increase in the phytic acid reduction, and the rate of the phytic acid loss decreased progressively.  相似文献   

16.
The target of this work was to develop a novel, industrially applicable process for simultaneously releasing different valuable components from wheat bran, including carbohydrates, oligomeric arabinoxylan and antioxidants. The process was based on alkaline pretreatment with potassium hydroxide (KOH) and subsequent enzymatic hydrolysis. Increasing KOH-dosage and thermal severity in pretreatment promoted carbohydrate solubilisation in hydrolysis, reaching glucose and arabinoxylan yields up to 86% and 76%, respectively. Release of antioxidants was particularly promoted by increasing KOH-dosage, while both the pretreatment severity and KOH-dosage promoted the release of oligomeric arabinoxylan in enzymatic hydrolysis. Two bran syrups, with or without KOH-treatment, were tested in bread making by substituting added sugar in the dough with bran syrup. The KOH-derived KCl also substituted 30% of NaCl in the bread formulation. The addition of bran syrup did not affect the baking properties of wheat bread dough. However, a decrease in bread flavour balance was observed with addition of syrup from KOH-pretreated bran. Conceptual level techno-economic assessment indicated that production of bran syrup would be economically feasible at a minimum selling price of 770 €/t and 1030 €/t with KOH-pretreatment and without KOH, respectively.  相似文献   

17.
While abrasive pearling (also referred to as debranning) of wheat kernels prior to milling increases the quality of the resultant flour for producing bread, the potential applications of the co-products of pearling is largely unknown. We studied the impact of different degrees of pearling (0, 3, 6, 9 and 12% by weight) on the composition of pearlings and bran obtained when subsequently roller milling pearled wheat kernels. Pearling does not remove the kernel outer tissues homogeneously as abrasion affects especially the accessible parts of the kernels. Nevertheless, the first 3% removed consisted of mainly pericarp. With 6% or more removed, a significant amount of starchy endosperm ended up in the pearlings. The starting bran material and bran obtained by subsequent roller milling of pearled wheat kernels had similar compositions but the latter had a lower average particle size. Moreover, removal of the outermost kernel layers substantially decreased the enzyme activity levels in the bran.  相似文献   

18.
When silage is exposed to air on opening the silo, or after its removal from the silo, fermentation acids and other substrates are oxidized by aerobic bacteria, yeasts and moulds. The aerobic stability of silage is a key factor in ensuring that silage provides well‐preserved nutrients to the animal with minimal amounts of mould spores and toxins. In this paper, key findings and recent developments are reviewed, and findings of recent research are integrated in terms of four themes: (i) the most significant biochemical and microbiological factors, (ii) physical and management factors, (iii) type of additive and (iv) silo sealing. The development of yeasts and moulds during plant growth, and during field wilting or storage, and the concentration of undissociated acetic acid in silage are important microbiological and biochemical factors affecting aerobic stability. Silage density and porosity are key physical factors that affect the rate of ingress of oxygen into the silage mass during the feed‐out period. A target for potential silage aerobic stability is 7 d including time in the feed trough. To achieve this target, speed of harvest should be coordinated with packing tractor weight to achieve a minimum silage density by the time of feed‐out of 210 kg DM m?3, maximum proportional porosity of 0·4 and a rate of silage removal, which matches or exceeds the depth of air penetration into the silo. The use of additives to increase aerobic stability is advisable when there is the risk of these objectives not being met. Novel microbial approaches to solving the problem of silage aerobic deterioration are needed.  相似文献   

19.
Phytase (EC 3.1.3.8) hydrolyzes phytic acid to myo-inositol and inorganic phosphate through intermediate myo-inositol phosphates. Microbial phytase has been employed to minimize the negative effects of phytic acid in cereal-based feeds, however, other sources such as wheat, would be natural alternatives. Investigations were therefore carried out to determine the levels of phytase activity in various cultivars and how the extraction of the enzyme may be enhanced using buffers fortified with glycanases. We screened 23 cultivars and the results showed that bran from hard white wheat cultivars had relatively lower levels of activity, ranging from about 1.5 to about 2.5 FTU/g bran, whereas hard red wheat cultivars had much higher levels, ranging from approximately 2 to 5.5 FTU/g bran. These levels were greatly enhanced, up to 5-fold, when extraction buffer contained a commercial preparation consisting of β-glucanase (EC 3.2.1.6) and endo-xylanase (EC 3.2.1.8) (Natugrain) (opt 1%) from BASF. The effect of glycanases was concentration and cultivar dependent, but not significantly influenced by temperature exposure of mixtures of samples with extraction buffers prior to extraction. Relative increases were more substantial in hard white than in hard red wheat cultivars. The additional value of supplementing grain-based diets with glycanases for monogastric animals is discussed.  相似文献   

20.
Wheat and barley are often cultivated also in paddy fields in winter in Japan. The drainage of paddy fields is often poor. The seedling establishment of wheat and barley is more prone to become poor if it rains heavily after sowing. The flooding damage on seedling establishment is thought to be caused by many factors. The generation of sulfide ions in flooded and reduced soil is thought to be one factor of the flooding damage. In this study, the effect of seed coating with molybdenum compounds, which suppress the generation of sulfide ions, on the flooding damage of wheat and barley seedling establishment. Two poorly soluble molybdenum compounds were coated on wheat or barley seeds at different amounts. Coated seeds were sown in soil and soon flooded for 2 d at 20 °C. When seeds were not coated with molybdenum compounds, rates of seedling establishment were no more than 32%. However, when any molybdenum compounds of .05–.5 mol-Mo kg?1 were coated, seedling establishment was significantly improved and rates of seedling establishment were no less than 54%. However, when sown seed were not flooded, the establishment rates of the seeds, which were coated with a molybdenum compound of no less than .1 or .2 mol-Mo kg-1, were significantly decreased. Accordingly, coating of molybdenum compounds could improve the seedling establishment of coated seeds under flooded condition, but might impair the seedling establishment of coated seeds under unflooded condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号