首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, the immune stimulation properties of cereal arabinoxylans (AX) have been reported. The aims of this study were to identify the molecular features and potential immune stimulation activities of AX and enzymatic modified arabinoxylan (AXE) from the pentosan fraction of wheat flour.The results of molecular characterization of AX and AXE show that AXE contains a larger portion (85.7%) of low Mw arabinoxylans (≤25 kDa) and has a higher degree of branch substitution (0.81 ± 0.01) compared to AX (49.5% and 0.62 ± 0.02). In in vitro testing, the ability of AX and AXE to stimulate immune cells, as measured by NO2 production by U937 cells and IL-8 secretion by Caco-2 cells were found to be dose–dependent in the range tested (100–5000 μg/mL p ≤ 0.05). AXE showed a greater activity at each concentration (100–5000 μg/mML) than AX (p ≤ 0.05).In conclusion, the greater immune stimulating activity of AXE may be associated with its low Mw (≤25 kDa) and a higher degree of branch substitution (0.81 ± 0.01).  相似文献   

2.
Volatile compounds formed during heat-treatment of wheat flour influence the application of treated flour. In this study, normal and waxy hard wheat flours before and after dry-heat treatment were subjected to headspace analysis by solid-phase microextraction of volatiles followed gas chromatography–mass spectrometry (GC/MS). The untreated waxy wheat flour contained higher levels of odor-active compounds than normal wheat flour including aldehydes, alcohols, furans, and ketones. Lipid oxidation appears to play major role in producing such odor compounds. Heat treatments, depending on the severity, alter the profile of volatile compounds. Low temperature (100–110 °C) treatments effectively eliminated cereal odor (aldehyde) and did not introduce additional odors, providing a possible way to produce low-odor flours. Heat treatments at 120 °C and higher temperatures elevated the content of pyrazines, furans, and sulfur-containing compounds which together gave a roasty aroma to the flours. Considering organoleptic properties, treatments of flours at 140 °C was superior to 160 °C. The waxy wheat flour was more prone to produce odor-active compounds than normal wheat flour during the same heat treatment.  相似文献   

3.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

4.
The potential of quinoa to act as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant peptides was studied. A quinoa protein isolate (QPI) with a purity of 40.73 ± 0.90% was prepared. The QPI was hydrolysed at 50 °C for 3 h with two enzyme preparations: papain (P) and a microbial papain-like enzyme (PL) to yield quinoa protein hydrolysates (QPHs). The hydrolysates were evaluated for their DPP-IV inhibitory and oxygen radical absorbance capacity (ORAC) activities. Protein hydrolysis was observed in the QPI control, possibly due to the activity of quinoa endogenous proteinases. The QPI control had significantly higher DPP-IV half maximal inhibitory concentrations (IC50) and lower ORAC values than QPH-P and QPH-PL (P < 0.05). Both QPH-P and QPH-PL had similar DPP-IV IC50 and ORAC values. QPH-P had a DPP-IV IC50 value of 0.88 ± 0.05 mg mL−1 and an ORAC activity of 501.60 ± 77.34 μmol Trolox equivalent (T.E.) g−1. To our understanding, this is the first study demonstrating the in vitro DPP-IV inhibitory properties of quinoa protein hydrolysates. QPHs may have potential as functional ingredients with serum glucose lowering properties.  相似文献   

5.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

6.
The variations of the amounts of individual high molecular weight glutenin subunits (HMW-GS), of the ratios HMW-GSy to HMW-GSx and HMW-GS to low molecular weight glutenin subunits (LMW-GS) and of protein content were evaluated for eight durum wheat cultivars in two regions using four fertilizer combinations during two successive years. All measured parameters showed significant variation with genotypes (G), environments (E) and fertilizers (F). The interaction E × G × F was highly significant for glutenin amount variation. Amongst cultivars possessing HMW-GS 20, landraces seem to better value the N-fertilizer use for the accumulation of HMW-GSy than high yielding cultivars. Both HMW-GSy to HMW-GSx and HMW-GS to LMW-GS ratios were found to be positively correlated (p < 0.05) with total protein content.  相似文献   

7.
The effect of thermal processing on the degradation of the phytochemicals in black rice flour by means of fluorescence spectroscopy and degradation kinetics was investigated. In order to investigate the influence of food matrices, a comparative analysis between integral rice flour and different fractions was performed. The preliminary compositional results suggested a higher content in phytochemicals in fraction four of the seven fractions of black rice flour, which was sifting through a sieve with a diameter of 180 μm. The compositional complexity was highlighted by fluorescence spectroscopy. The heat-treatment caused structural changes that led to red- or blue-shifts in maximum emission. The first-order kinetic model was used to describe the mechanism of degradation. The activation energies were 10.07 ± 1.04 kJ/mol for total polyphenolic, 7.26 ± 0.58 kJ/mol for total monomeric anthocyanins and 6.71 ± 1.12 kJ/mol for antioxidant activity in case of integral flour extract. For fraction four extract obtained by, the Ea values were: 3.51 ± 0.53 kJ/mol, 11.49 ± 1.47 kJ/mol, 15.80 ± 1.50 kJ/mol and 19.91 ± 3.27 kJ/mol, respectively. The calculated values of the activation energy revealed higher temperature dependence of total polyphenols in integral flour and of antioxidant activity in fraction four, respectively.  相似文献   

8.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   

9.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

10.
High quality requirements are set on durum wheat (Triticum durum) from semolina mills and pasta producers. For the production of semolina and pasta with good cooking quality, high grain protein content and vitreosity is required. The dependency of vitreosity on protein content as well as its stability under the influence of humidity was not well investigated up to now. We (1) compared two methods to determine vitreosity, (2) investigated the relationship between vitreosity and protein content, (3) developed a method to analyze vitreosity under humidity, and (4) examined the relationship between protein content and agronomical as well as quality traits in durum wheat. The results showed that the formation of vitreous kernels greatly depends on the protein content. To evaluate the stability of vitreosity under the influence of humidity a new method was elaborated and employed to assess the durum germplasm under study. This revealed that vitreosity of a durum wheat variety depends on the potential to form vitreous kernels but also to maintain this vitreosity under the influence of humidity. Our results further show that protein content is a central trait in durum wheat that strongly influences important traits like grain yield, vitreosity, and b-value.  相似文献   

11.
Grain physical characteristics and milling behavior of a durum wheat line in which both wild-type puroindoline genes were translocated and stabilized after backcrossing (Svevo-Pin) were compared with the parent line (Svevo). The only observed differences between grain characteristics were the mechanical resistance and starchy endosperm porosity revealed through vitreosity measurement. A significant increase of flour and a decrease of semolina yield and break milling energy were observed from Svevo-Pin in comparison with the non-recombinant parent line in accordance to the lower grain mechanical resistance and higher porosity measurements. Moreover, the particle size distribution shown for Svevo-Pin flour appeared consistent with a lower adhesion between starch granules and the protein matrix attributed to the presence of wild-type puroindolines. Coarse bran yield was conversely increased. This appeared to be due to a lower starchy endosperm recovery as a higher proportion of grain starch was found in this bran fraction. Flour from the durum parent line was inversely enriched in phytic acid, a cellular marker of the aleurone layer. Starch damage was also lower in Svevo-Pin flours in comparison with Svevo. All of the observed differences between translocation and parent lines were confirmed independent of the culture growth conditions (n = 12).  相似文献   

12.
The objective of this study was to examine the effects of whole-wheat flour (WWF) particle size on the quality attributes of WWF tortillas. WWF samples of different particle size distributions from commercial U.S. hard white (median diameters: 175.7, 128.6, 120.0, 108.5 and 102.4 μm), hard red winter (median diameters: 173.7, 133.6, 124.3, 110.8 and 104.2 μm) and hard red spring (median diameters: 173.7, 132.1, 124.7, 112.9, 106.3 μm) wheat classes were obtained by fine grinding of bran and shorts and re-combining with the rest of fractions. For all three wheat classes, as WWF median particle size decreased, the L* (lightness) value decreased but the adjusted damaged starch, polyphenol oxidase activity, and a* and b* values increased. Mixolab data showed that development time decreased as WWF particle size was reduced, while stability time and starch retrogradation increased. As for WWF tortilla quality, the breaking force and extensibility increased with decreasing particle size from ∼175 to 129–134 μm, but diameter and thickness were not significantly affected. The results indicated that reducing the median particle sizes of WWFs from ∼175 μm to ∼130 μm would significantly improve the WWF tortilla quality.  相似文献   

13.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

14.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

15.
The present study focused on the quality traits of durum wheat grains (protein and content, gluten content, yellow pigment content), semolina (gluten index and yellow index) and pasta (firmness, yellow index, cooking time) obtained from 12 durum wheat genotypes grown under elevated atmospheric CO2 concentration in an open field Free Air CO2 Enrichment (FACE) experiment. The aims were to evaluate the impact of elevated CO2 on durum wheat pasta making related traits as well as investigate genetic differences existing in a panel of old and modern cultivars. The protein content showed a not significant decrease (7%), the GC decreased significantly (13.3%), while the GI showed an increasing significant tendency (14%). The overall pasta quality (firmness and weight) worsened in ELE. Correlation between all traits and pasta firmness demonstrated that the decrease in pasta firmness under ELE was correlated with GPC and GC while it was not with the GI. All varieties, although to different extent, showed lower pasta firmness values compared to the ambient condition. Among the varieties tested, some were more sensitive than others to the increased atmospheric CO2 concentration, a finding that can be exploited by breeding for designing novel genotypes with lower sensitivity to increased atmospheric CO2.  相似文献   

16.
Corn bran was microfluidized through a 200-μm channel in the pressure range of 124.1–158.7 MPa for 1–5 passes following the central composite experimental design. Physicochemical properties and antioxidant properties of microfluidized bran samples were measured and fitted to the second order polynomial model. The response surface equations obtained showed that all the properties examined had a positive linear relationship with pressure and a negative quadratic relationship with number of passes except for ABTS radical scavenging activity which was quadratically related to both processing parameters. The number of passes generally had a more pronounced effect on the examined properties compared with pressure. Within the experimental range, the maximum values of swelling capacity, water-holding capacity, and oil-holding capacity were respectively 10.62 ml/g d.w. (at 158.7 MPa), 5.49 g water/g d.w. (at 158.7 MPa), and 4.61 g oil/g d.w. (at 124.1 MPa); the maximum values of surface reactive phenolic content, DPPH and ABTS radical scavenging activities were 148.80 mg/FAE g d.w. (at 158.7 MPa), 50.02 μmol TE/g d.w. (at 158.7 MPa), and 47.90 μmol TE/g d.w. (at 145.9 MPa), respectively. All maximum values of the properties occurred at 5 passes.  相似文献   

17.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

18.
The GlutoPeak®-Test (GPT) as a rapid small-scale technique was optimized to evaluate the gluten aggregation properties and to predict the loaf volume, on the basis of a multiyear and multilocation analysis of wheat samples, using different solvents. 5 % lactic acid and 1 % sodium chloride displayed significant GPT responses. Relationships between protein content, sedimentation value, GPT parameters and loaf volume were investigated. With 1 % sodium chloride, the torque 15 s before maximum torque (AM) presented the highest correlation with loaf volume of samples from 2013 to 2014 (r = 0.77, r = 0.63, p < 0.001, respectively). A multiple regression analysis indicated that the best prediction of loaf volume was a linear function of protein content and AM, explaining the variation in loaf volume by 63 % and providing an uncertainty of ±39 ml. The accuracy of the validation of the linear function leads to 64 % correct and to 36 % incorrect predictions of the loaf volume. This emphasizes that the application of the linear function of protein content and AM cannot replace the actual measurement of loaf volume, but it could be a useful rapid screening test in breeding for improved baking quality in bread wheat.  相似文献   

19.
20.
Two locally grown wheat species named Triticum aestivum L. and Triticum vulgare L. were studied for their phytochemical contents and their biological activities. T. vulgare presented the highest amounts of total phenolic compounds and ascorbic acids while T. aestivum was found to be rich in flavonoids, flavonols, proanthocynidins and ortho-diphenols. Eleven carotenoids were identified in T. vulgare where the most dominant compounds belongs to α-carotene and its derivatives while T. aestivum presented seven carotenoids. This later presented the highest DPPH radical scavenging activity and exhibited a strong reducing power in FRAP, phosphomolybdenum, hydrogen peroxide and reducing power assays. T. vulgare extract was found to be effective in metal chelating power and in scavenging nitric oxide radical. No significant differences in scavenging ABTS and hydroxyl radicals were noted between the two wheat species. T. aestivum inhibited xanthine oxidase and ROS production and showed the best cytotoxic effect while T. vulgare extract exhibited anti-calpain activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号