首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of continuous or 2-cycle high hydrostatic pressure (HHP) treatments (200 and 600 MPa) on the microstructure and digestibility of rice starches were investigated. The morphological and structural changes were characterized using polarized light microscopy, scanning electron microscopy, atomic force microscopy, X-ray scattering and 13C CP/MAS NMR, and the starch digestibility was examined by in vitro hydrolysis. Results showed that HHP at 600 MPa significantly alters the microstructure and lowers the resistant starch (RS) compared with HHP at 200 MPa. Under the same pressure level, the two 15-min cycle treatment induced more structural disruption, gelatinization, disappearance of surface protrusion, and lower RS of rice starches than that of the continuous HHP treatment (30 min). Based on the results on RS, the two 15-min cycle HHP treatment at 200 MPa could be beneficial for improving the functionality of the rice starch.  相似文献   

2.
The susceptibility of wheat (Triticum aestivum L.) starches to hydrolysis by pancreatic α-amylase in vitro was investigated using a series of 35 starches with slightly enriched amylose content within a narrow range (36–43%), but widely differing functional properties. After 2 h of incubation with α-amylase, native starch granules were digested to different extents, but there were no differences between any of the starches once they were gelatinized. Cooling the starch for 72 h at 4 °C after cooking reduced the susceptibility of all of the starches to enzymic digestion by a similar extent, whereas addition of monopalmitin decreased the digestibility of the starches that contained amylose, but did not affect the digestibility of waxy starches that were also included in the study. Amylopectin chain length distribution of partly digested starch granules displayed increased proportion of short and medium chains and decreased proportion of long chains in comparison to native granules. Separated large (A) and small (B) starch granules from three of the starches differed significantly in their susceptibility to in-vitro digestion. A predictive model of the susceptibility of starch in the different forms was developed from the physico-chemical and functional properties of the starches.  相似文献   

3.
Experimental gluten-free (GF) rice cookies were formulated with 100% rice flour (CTR) or by substituting 50% of rice flour with native waxy rice starch (WRS) or with three different resistant starch (RS) ingredients obtained from debranched, annealed or acid and heat-moisture treated WRS (RSa, RSb and RSc, respectively). Chemical composition, in vitro starch digestibility and physical and textural characteristics were carried out. Among cookies, RSa-cookies had the highest total dietary fibre content, the lowest rapidly digestible starch and the highest RS contents. All the three RS preparations have proved effective in increasing the proportion that tested as RS with respect to native WRS. However, the estimated RS loss for each applied RS ingredients caused by the baking process followed the order of RSa < RSc < RSb. Last, the lowest vitro glycaemic index value was measured for RSa-cookies. Among cookies, differences in colour and hardness were reported. The partial replacement of commercial rice flour with RSa could contribute to formulate GF cookies with higher dietary fibre content and likely slowly digestible starch properties more than equivalent amounts of RSb and RSc.  相似文献   

4.
The investigation explores the possibility of utilizing legume flour (pigeon pea:10–30%) and brown rice flour (35–45%) for production of pasta using twin screw extruder. RSM was used to analyse the effect of feed moisture (28–36%), barrel temperature (70–110 °C) and legume:brown rice ratio on quality responses (in vitro starch and protein digestibility, degree of starch gelatinization, cooking quality, pasting properties, color and textural properties) of pasta. Extrusion processing significantly enhanced in vitro starch and protein digestibility of prepared pasta. The in vitro starch and protein digestibility of pasta ranged between 15.00 and 26.77 g/100 g and 50.34–84.82 g/100 g respectively. Addition of brown rice flour and pigeon pea flour exhibited dominating positive effect on cooking quality of the pasta. Degree of gelatinization of prepared pasta was found in range of 52.13–90.10 per cent. Color characteristics viz. luminosity, redness and yellowness of pasta enhanced with feed moisture. Pasting properties revealed lower peak and final viscosity at higher processing conditions. Firmness of cooked pasta elevated with an increase in the barrel temperature. Acceptability score of health based pasta on the basis of sensory attributes was 8 as inferred from 9 point hedonic scale.  相似文献   

5.
Whole grain oat flour was extruded under different moisture contents (15%, 18%, 21%), barrel temperatures (100 °C, 130 °C), and screw speeds (160 rpm, 300 rpm, 450 rpm), and selected physicochemical properties, in vitro starch digestibility, and β-glucan extractability of the extrudates were analyzed. An increase in screw speed resulted in an increase in radial expansion index, water absorption index, and water solubility index. Screw speed significantly affected slowly and rapidly digestible starch. Moderate screw speed (300 rpm) led to higher slowly digestible starch with an accompanying decrease in rapidly digestible starch. Low moisture conditions (15%) resulted in the highest resistant starch and water-extractable β-glucan. Under the conditions used in this study, extrusion did not result in changes in water-extractable β-glucan molecular weight. Thus, extrusion might be beneficial in improving functionality and consumer acceptability by affecting physicochemical properties, in vitro starch digestibility, and β-glucan extractability of oat extrudates.  相似文献   

6.
Starch–fatty acid complexes were prepared using swelled normal cornstarch (NC) and lauric acid (LA). Two different modes of adding LA to the starch slurry were employed; i.e. either adding the LA to the heated starch suspension (method I) or adding the LA to the starch suspension and then heating (method II). Effects of the modes of adding LA on the V-amylose complex distribution and digestibility were studied. Lipid content determination indicated that method I is favorable to the formation of V-amylose complex. Light and confocal laser scanning microscopic examination indicated that NC–LA complex prepared by method I seemed to be more swollen, and the V-amylose complex distributed throughout the granules, while NC–LA complex prepared by method II was mainly distributed on the surface of starch granules. The results of X-ray diffraction and thermal property demonstrated that method I was more beneficial to the formation of more crystalline structure than that of method II. The in vitro digestibility investigation showed that the addition of LA through method I had the ability of slowing the hydrolysis of starch.  相似文献   

7.
The essential oil and fatty acid composition of two provenances of Ruta chalepensis from four organs (leaves, flowers, stems and fruits) was determined. The effect of the plant part on total fatty acid contents, essential oil yields, fatty acid and volatile constituents was significant.Fatty acid profiles varied significantly among the studied provenances and organs. Linolenic acid had the highest amount in leaves of the two provenances. From R. chalepensis, in all organs, the main fatty acids were palmitic (13.10-25.31%), followed by palmitoleic (0-15.72%), stearic (1.03-6.85%), oleic (1.90-24.04%), arachidic (0.11-4.03%), eicosatetraenoic (0.10-5.60%) and behenic (0.47-6.09%) acids. Saturated fatty acids had the highest amounts in growing wild R. chalepensis flowers, and cultivated R. chalepensis stems were characterized by the predominance of polyunsaturated fatty acids. Oil composition of all studied organs has a healthy and nutritionally value. Essential oil yields varied from 0.39% to 2.46% and showed a remarkable variation with plant organs. Thirty-six volatile compounds were identified in different analyzed essential oils; 2-undecanone, 2-nonanol and 2-dodecanone had the highest percentages.  相似文献   

8.
Flours derived from rice varieties with different amylose content possess distinct physicochemical and molecular properties. The aim of this study was to determine optimal processing conditions for preparing rice flour-based foods with reduced starch digestibility. To do so, we evaluated the in vitro starch digestibility of rice flours with five varieties. Reducing the amount of water (from 10-fold to 4-fold of rice flour) used for cooking rice flour lowered its starch digestibility, and the magnitude of the decrease was positively correlated with amylose content. When retrogradation of cooked rice flour proceeded for 7 days, the digestibility of high-amylose rice flours declined rapidly in the first 3 days, whereas the digestibility of low-amylose rice flours declined continuously. Our analysis also demonstrated that the chain length distribution of starch molecules and the final and setback viscosity pasting properties were the most important parameters affecting the digestibility of rice flours. Based on our results, it appears possible to reduce rice starch digestibility by establishing optimum processing conditions for different varieties. We suggest a 7-fold addition of water and retrogradation for 1 day for high-amylose rice varieties and a 4-fold addition of water with 3 days of retrogradation for low-amylose rice.  相似文献   

9.
Studies on porous starch have been directed to explore different industrial applications as bio-adsorbents of a variety of compounds. However, the analysis of starch digestibility is essential for food application. The objective of this study was to determine the impact of porous structure on in vitro starch digestibility. Porous starches were obtained using a range of concentrations of amyloglucosidase (AMG), α-amylase (AM), cyclodextrin-glycosyltransferase (CGTase) or branching enzyme (BE). Porous starches exhibited major content of digestible starch (DS) that increased with the intensity of the enzymatic treatment, and very low amount of resistant starch (RS). Porous starches behaved differently during in vitro hydrolysis depending on their enzymatic treatment. AMG was the unique treatment that increased the digestive amylolysis and estimated glycemic index, whereas AM, CGTase and BE reduced them. A significant relationship was found between the pore size and the severity of the amylolysis, suggesting that a specific pore size is required for the accessibility of the digestive amylase. Therefore, pore size in the starch surface was a limiting factor for digestion of starch granules.  相似文献   

10.
Market samples of pearl millet flour and bread from Saudi Arabia were analysed for chemical composition and nutritional quality. Pearl millet flour contained, on a dry weight basis, 17.4% protein, 6.3% fat, 2.8% fiber and 2.2% ash. Lysine was the most limiting essential amino acid with a chemical score of 53 (FAO/WHO, 1973). Linoleic acid (44.8%), oleic acid (23.2%) and palmitic acid (22.3%) were the dominant fatty acids in millet oil followed by stearic acid (4.0%) and linolenic acid (2.9%). The invitro protein digestibility (IVPD) of millet flour was 75.6% and the calculated protein efficiency ratio (C-PER) was 1.38 in comparison to ANRC casein values of 90% and 2.50, respectively. Baking at 300°C for 15 min had only little effect on the proximate and fatty acid composition of the bread but decreased the arginine, cystine and lysine contents by 31.3%, 15.8% and 13.8%, respectively. The IVPD was not affected but the C-PER decreased by 18% on baking.  相似文献   

11.
Bran is a good source of dietary fibre, phytochemicals, and also protein, but highly insoluble and recalcitrant structure of bran hinders accessibility of these components for gastrointestinal digestion. In the present work, influence of bioprocessing on the microstructure and chemical properties of rye bran and wheat bread fortified with the rye bran were studied. In vitro protein digestibility, and release of short chain fatty acids (SCFA) and ferulic acid in a gut model were studied. Bioprocessing of rye bran was performed with subsequent treatments with cell-wall hydrolysing enzymes (40 °C, 4 h) and yeast fermentation (20 °C, 20 h). Bioprocessing of rye bran resulted in reduced total dietary fibre content, caused mainly by degradation of fructan and β-glucan, and increased soluble fibre content, caused mainly by solubilisation of arabinoxylans. Microscopic analysis revealed degradation of aleurone cell wall structure of the bioprocessed rye bran. Bioprocessing caused release of protein from aleurone cells, assessed as a larger content of soluble protein in bran and a higher hydrolysis rate in vitro. Bioprocessed bran had also faster SCFA formation and ferulic acid release in the colon fermentation in vitro as compared to native bran.  相似文献   

12.
Waxy and non-waxy hull-less barley kernels and their isolated starches were irradiated under different microwave conditions (power 640, 720, and 800 W, time 60, 120 and 180 s). Changes in physicochemical properties were studied to investigate the effects of microwave irradiation (MWI) on in-kernel starches and isolated starches. For in-kernel starch, microwave reduced the ratio of 1047/1022 cm−1 wavelengths, gelatinization enthalpy (ΔHg) and relative crystallinity (RC), indicating that microwave of starch within the cells disrupted the crystalline regions. For isolated starch, microwave decreased the ratio of 1047/1022 cm−1 wavelengths but increased ΔHg of isolated starch, indicating that microwaving resulted in disruption of amorphous structure and an increase in the amount of remaining double helix structure. Moreover, viscosities of in-kernel starches decreased as microwave power and time increased, but this was not observed in isolated starches. Microwave treatment induced an enhancement of gelatinization temperature for non-waxy starches (NWS) but decreased in waxy starches (WS). Microwave had a greater effect for swelling power and solubility on in-kernel MWI-WS than MWI-WS, whereas the reverse results were found between in-kernel MWI-NWS and MWI-NWS. The results indicated that amylose plays a profound role in the properties of isolated and in-kernel starches during microwaving.  相似文献   

13.
This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow), elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.  相似文献   

14.
Pearl millet grown at two different locations in the U.S.A., pearl millet A (PMA) and pearl millet B (PMB), were analyzed for chemical composition and nutrient content and compared to corn. The two samples of pearl millet and corn were incorporated into diets and fed to 24 growing pigs in a metabolism trial to determine nitrogen and mineral balance and digestibilities of energy, fat and amino acids. Pearl millet (PMA and PMB) was found to be richer in crude protein, gross energy, ether extract, acid detergent fiber, amino acid profile and mineral content than corn. However, digestibilities of dry matter (corn, 86·8%; PMA, 80·5%; PMB, 82·0%) and energy (corn, 85·3%; PMA, 78·8%; PMB, 80·5%) were higher (P<0·05) for corn than either of the pearl millet samples. Fat digestibility was much higher in pearl millet than corn. Although nitrogen intake and absorption were higher (P<0·05) for pearl millet, the digestibility of nitrogen was similar for pearl millet and corn. Net protein utilization was lower (P<0·05) in pearl millet when compared to corn (corn, 44·8%; PMA, 34·6%; PMB, 39·9%). Digestibilities of the essential amino acids, arginine, threonine, valine, isoleucine and lysine were higher in pearl millet than corn. Phosphorus retention, expressed as a percentage of intake and absorption, was higher in corn than pearl millet. Calcium intake and absorption were similar for pearl millet and corn. Intake and absorption of magnesium and managanese were also similar in pearl millet and corn. Zinc and copper retention, when expressed as a percentage of intake, were higher in corn, but absorption for both minerals was similar in corn and pearl millet. Pearl millet was found to supersede corn in nutrient content and amino acid digestibility.  相似文献   

15.
Germinated brown rice (GBR) recently has received renewed attention due to its enhanced nutritional value. Pasting properties and in vitro starch digestibility of GBR were examined before and after hydrothermal treatments. Steeping in water (30 °C, 24 h) raised the moisture content and germination percentage of brown rice. Pasting viscosity was substantially decreased but gelatinization temperatures and enthalpy were decreased only marginally by germination (30 °C, 48 h). However, annealing (50 °C, 24 h) and heat-moisture treatment (100 °C, 1 h at 30% moisture) after germination resulted in increased pasting viscosity and gelatinization temperatures. The hydrothermal treatments, however, induced browning reactions to darken the flour of GBR. The digestibility of starch in brown rice was increased by germination. The contents of rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) in the cooked brown rice were 47.3%, 40.8%, and 11.9%, respectively, but changed to 57.7%, 39.1%, and 3.2%, respectively upon germination. The hydrothermal treatments, however, decreased the digestibility of starch in GBR. The heat-moisture treatment decreased the RDS content in GBR near to that of native brown rice. The digestibility and physical properties of brown rice can be controlled by germination and hydrothermal treatments.  相似文献   

16.
A series of starch-fatty acid samples were prepared using three types of starches differing in their amylose content i.e. maize, pea and amylomaize and three fatty acids differing in their chain length; i.e. myristic, palmitic and stearic. Two different modes of heating the starch systems were employed; i.e. either prior to the addition of the acid to starch aqueous dispersions or after heating the dispersions at the predetermined temperatures 75, 85 or 98 °C. Light and SEM microscopic examination indicated that amylose-fatty acid interactions taken place during starch gelatinization retarded the destruction of the granules depending on the heating temperature. XRD studies revealed that the degree of crystallinity exhibited by the starch samples was dependent on the amylose content, the fatty acid chain length and the modes of heating employed.  相似文献   

17.
Normal corn, Hylon V and Hylon VII starches were partially degraded by acid-ethanol treatment and applied to heat-moisture treatment (HMT) for improving the enzymatic resistance of starch. The weight-average degree of polymerization (DPw) of acid-ethanol-treated (AET) corn starches ranged from 6.75 × 105 to 181, 4.48 × 105 to 121, and 1.94 × 105 to 111 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Starch retained its granular structure after AET and HMT, recovery of starch granules after modifications were higher than 92%. Resistant starch (RS) content and boiling-stable RS content of corn starch increased after dual modification, and the increment increased with increasing duration of AET. The boiling-stable RS content of dual-modified starch increased from 1.5 to 9.2, 12.2 to 24.1, and 18.0 to 36.2% for normal corn, Hylon V and Hylon VII starches, respectively. Increments of RS content and boiling-stable RS content of dual-modified starches were significantly correlated (r2 > 0.700) with DPw of starch, revealing that the enzymatic resistance of dual-modified corn starch granules increased with decreasing molecular size of starch. Result also suggested that starch granules partially degraded with AET could improve the molecular mobility and ordering during the consequent HMT.  相似文献   

18.
The effects of endosperm vitreousness, cooking time and temperature on sorghum and maize starch digestion in vitro were studied using floury and vitreous endosperm flours. Starch digestion was significantly higher in floury sorghum endosperm than vitreous endosperm, but similar floury and vitreous endosperm of maize. Cooking with 2-mercaptoethanol increased starch digestion in both sorghum and maize, but more with sorghum, and more with vitreous endosperm flours. Increasing cooking time progressively reduced starch digestion in vitreous sorghum endosperm but improved digestibility in the other flours. Pressure-cooking increased starch digestion in all flours, but markedly more in vitreous sorghum flour; probably through physical disruption of the protein matrix enveloping the starch. Irrespective of vitreousness or cooking condition, the alpha-amylase kinetic constant (k) for both sorghum and maize flours remained similar, indicating that differences in their starch digestion were due to factors extrinsic to the starches. SDS-PAGE indicated that the higher proportion of disulphide bond-cross-linked prolamin proteins and more extensive polymerisation of the prolamins on cooking, resulting in polymers of Mr>100k, were responsible for the lower starch digestibility of the vitreous sorghum endosperm flour.  相似文献   

19.
Kenaf (Hibiscus cannabinus L.) is a fibre plant native to east-central Africa. The potential for using kenaf seeds as a source of edible oil is often overlooked when considering kenaf as a fibre and feed crop. The aim of this research was to study and compare the fatty acid composition and oil content of eight commercial kenaf varieties from various countries. Linoleic, oleic, and palmitic acid were the predominant fatty acids in all cultivars. Percentages of fatty acids varied greatly among different kenaf varieties. Gregg had the highest percentage of linoleic acid whilst El Salvador had the lowest. El Salvador had the highest percentage of oleic acid and Endora had the highest percentage of palmitic acid. Stearic acid and palmitic acid were positively correlated, as well as stearic and linoleic acid. Increasing stearic and linolenic acid and reducing palmitic acid at the same time therefore might be difficult through conventional breeding. The oil content was 19.84% on average and there was not much difference between the varieties. The relatively high oil content and the unique fatty acid composition, suggested that kenaf seed could be used as a source of edible oil. Kenaf oil can be considered nutritionally healthy because of the relatively high amount of monounsaturated and polyunsaturated fatty acids.  相似文献   

20.
Seeds of thirteen genotypes of cauliflower, four of turnip and seven of radish were analysed for oil content and fatty acid composition. Turnip and radish had higher oil content as compared to cauliflower. Oleic, linoleic + eicosenoic and erucic acids were the major fatty acids in the oils of these seeds. Levels of erucic acid were in the order of radish < turnip < cauliflower. Compared to cauliflower and turnip seeds, radish seeds contained higher amounts of palmitic, oleic, and linolenic + eicosenoic acids and lower amounts of linoleic and erucic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号