共查询到10条相似文献,搜索用时 0 毫秒
1.
Unpredictable temperatures and rainfall associated with climate change are expected to affect wheat (Triticum aestivum L.) production in various countries. The development of climate-resilient spring wheat cultivars able to maintain grain yield and quality is essential to food security and economic returns. We tested 54 CIMMYT spring bread wheat genotypes, developed and/or released over a span of 50 years, in the field for two years under optimum sowing dates, as well as using two delayed sowing dates to expose crops to medium and severe heat-stress conditions. The grain yield and yield components were severely affected as the heat-stress increased. Two contrasting groups of 10 lines each were identified to determine the effect of heat-stress on bread-making quality. The first set included entries that produced high yields in optimal conditions and maintained higher yields under heat-stress (superior-yielding lines), while the second set included genotypes that did not perform well in the environment with high temperature (inferior-yielding lines). We identified genotypes exhibiting bread-making quality stability, as well as the quality traits that had higher correlation with the loaf volume in the environment without stress and under heat-stress. Of all the quality traits tested, dough extensibility (AlvL) and grain protein content had a significant influence in heat-stress adaptation. Most of the lines from the superior-yielding group were also able to maintain and even improve quality characteristics under heat-stress and therefore, could be used as parents in breeding to develop high-yielding and stable quality wheat varieties. 相似文献
2.
3.
Environmental conditions during grain-fill can affect the duration of protein accumulation and starch deposition, and thus play an important role in grain yield and flour quality of wheat. Two bread-, one durum- and one biscuit wheat were exposed to extreme low (−5.5 °C for 3 h) and high (32 °C/15 °C day/night for three days) temperatures during grain filling under controlled conditions for two consecutive seasons. Flour protein content was increased significantly in one bread wheat, Kariega, under heat stress. Cold stress significantly reduced SDS sedimentation in both bread wheats. Kernel weight and diameter were significantly decreased at both stress treatments for the two bread wheats. Kernel characteristics of the biscuit wheat were thermo stable. Kernel hardness was reduced in the durum wheat for the heat treatment. Durum wheat had consistently low SDS sedimentation values and the bread wheat high values. Across the two seasons, the starch content in one bread wheat was significantly reduced by both high and low temperatures, as is reflected in the reduction of weight and diameter of these kernels. In the durum wheat, only heat caused a significant reduction in starch content, which is again reflected in the reduction of kernel weight and diameter. 相似文献
4.
High temperature has a negative impact on wheat grain quality and reduces market value. Emmer wheat (Triticum dicoccon Schrank), one of the earliest domesticated wheat species, is a source of genetic diversity for the improvement of heat and drought tolerance in modern wheat. However, the potential of emmer wheat for the improvement of grain physical quality under high temperature stress is little studied. A diverse set of 184 emmer-based hexaploid lines was developed by crossing emmer wheat with hexaploid wheat and backcrossing once to hexaploid wheat. These materials, seven hexaploid recurrent parents and seven commercial cultivars, were evaluated at two times of sowing (E1 and E2) in the field, in 2015–2016. The materials were genotyped using a 90 K SNP platform and these data were used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for grain physical quality traits including protein content and test weight was observed. High temperature significantly increased protein content and decreased test weight. Large scale field phenotyping identified emmer progenies with improved grain characteristic compared to their respective parents and commercial cultivars in both environments. A few families consistently produced higher trait means across environments compared to their recurrent parents. The emmer wheat parent contributed between 1 and 37% of the genome in emmer-based genotypes. Selected emmer derived lines with superior protein content and test weight, tended to have a greater genetic contribution from the emmer parent, ranging from 12 to 37% and 7–37% in E1 and E2, respectively. It was concluded that new genetic variation for seed traits, such as protein content and test weight, can be introduced to hexaploid wheat from emmer wheat. The newly developed emmer derivatives identified with enhanced grain quality under high temperature stress can potentially be used to improve grain quality through breeding. 相似文献
5.
Abiotic stress caused by increasing temperature and drought is a major limiting factor for wheat productivity around the world. Wheat plays an important role in feeding the world, but climate change threatens its future harvest and nutritional quality. In this study, grain iron (Fe) and zinc (Zn) concentrations of 54 wheat varieties, including CIMMYT derived historic and modern wheat varieties grown in six different environmental conditions, were analyzed. The objective of the study was to evaluate the effect of water and heat stress on the nutritional value of wheat grains with a main emphasis on grain protein content, Zn and Fe concentrations. Significant effects of environment on protein content and grain micronutrients concentration were observed. The protein and Zn concentrations increased in the water and heat stressed environments, whereas Zn and Fe yield per unit area was higher in non-stress conditions. The results suggest that genetic gains in the yield potential of CIMMYT derived wheat varieties have tended to reduce grain Zn, in some instances; however, environmental variability might influence the extent to which this effect manifests itself. 相似文献
6.
Hongbo Ma Xiao Zhang Canguo Wang Derong Gao Boqiao Zhang Guofeng Lv Ronglin Wu Xiaoming Cheng Xiue Wang Shunhe Cheng Tongde Bie 《Journal of Cereal Science》2013
The effect of wx genes on amylose content, physicochemical properties of wheat starches, and the quality of Chinese crisp stick were investigated using near-isogenic lines (NILs) with null wx alleles in Yangmai 17 and Yangmai 01-2 backgrounds. wx genes showed significant effects on amylose content and other traits. The triple-null genotype had the lowest amylose content among eight genotypes, followed by double-null, single-null, and wild-type genotypes. The triple-null also showed lower flour yield, higher percentage of type B-granules on a volume basis and higher crystallinity than non-waxy genotypes, and showed significant differences in all pasting and thermal transition parameters compared to non-waxy genotypes, except for degree of retrogradation at day 14. For the quality of Chinese crisp stick, the hardness, crispness, fracturability, and specific volume of waxy genotype were 3.91 kg, 11.0, 1.85 mm and 104.4 ml, whereas the corresponding ranges for non-waxy genotypes were 5.39–5.70 kg, 0.5–0.9, 0.69–0.86 mm and 49.5–57.6 ml, respectively, in Yangmai 17 background. This indicates that waxy genotypes showed significantly better crisp stick quality than non-waxy genotypes. A similar trend was also observed in Yangmai 01-2 background. This indicated the potential utilization of waxy wheat for producing traditional products. 相似文献
7.
Heat and drought stress on durum wheat: Responses of genotypes,yield, and quality parameters 总被引:1,自引:0,他引:1
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions. 相似文献
8.
The aim of this study was to improve the baking quality of whole-wheat saltine cracker (WWSC) using endoxylanases, vital wheat gluten (VWG), and gum Arabic. SRC results showed both water-SRC and sucrose-SRC of soft white whole-wheat flour (SWWW) were significantly reduced by gum Arabic (r = 0.94, P < 0.05). Alveograph results indicated that the tenacity and extensibility of the whole-wheat dough (WWD) were increased by VWG. Rheometer G′ and G″ moduli increased with higher addition levels of endoxylanases, VWG, and gum Arabic. Low-field nuclear magnetic resonance (LF-NMR) detected three CPMG proton populations (T21, T22, and T23) in WWD. T21 peak area ratio (tightly bound water) reduced and T22 peak area ratio (less tightly bound water) increased with the levels of each additive. LF-NMR results revealed increased water mobility from T21 population to T22 population with addition of these additives, which was beneficial for gluten to form a continuous network. Both stack height and specific volume of WWSC were improved by the use of endoxylanases, VWG, and gum Arabic, but the breaking strength varied. The results of Orthogonal experimental design showed that the most-improved quality WWSC could be produced by combining 0.035% endoxylanases, 1.5% VWG, and 1.5% gum Arabic into SWWW flour. 相似文献
9.
pH缓冲液诱导冬小麦苗期抗寒的生理机理 总被引:1,自引:0,他引:1
为探讨外源pH缓冲液喷施诱导冬小麦苗期抗寒的生理机理,以济麦22为材料,采用盆栽试验的方法,分析了pH缓冲液处理后经低温胁迫的冬小麦叶片相对电导率、相对含水量、气孔导度、丙二醛(MDA)含量和抗氧化酶活性的变化。结果表明,随着低温胁迫时间的延长,冬小麦叶片相对电导率和MDA含量均增加。与对照相比,喷施pH 6.5和pH 6.0的缓冲液降低了相对电导率和MDA含量,且减少了超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的下降幅度,以pH 6.0缓冲液处理效应最为显著,经该处理6d时叶片相对含水量和气孔导度也比对照明显提高。说明适宜的外源pH缓冲液处理可诱导冬小麦酶促和非酶促防御系统抗逆机能的增强,有利于植株经受更长时间低温胁迫。 相似文献
10.
Samira ChekaliSamia Gargouri Timothy Paulitz Julie M. NicolMohsen Rezgui Bouzid Nasraoui 《Crop Protection》2011,30(6):718-725
The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and water stress (P<0.0001), with more disease under drier conditions. Additionally, the tiller number per mature plant, the 1000 grain weight and disease severity in mature stage were reduced by inoculation in greenhouse studies. In a field test, inoculation with F. culmorum significantly reduced the yield (P<0.001), by more than 17% for Om Rabiaa and 38% for Karim, the two cultivars tested. Yield was also significantly affected by precipitation and irrigation levels. The severity of the disease, estimated by the percentage of white heads, was separately affected by the cultivar (P<0.001) and inoculation (P = 0.0004). Percentage of white heads was 1.5 and 2 × higher in inoculated plants than non-inoculated for Om Rabiaa and Karim cultivars, respectively. Disease severity was highest in treatments with the greatest water stress. This is the first detailed study of water stress and F. culmorum on durum wheat in Tunisia, and indicates that cultivar resistance and irrigation management may be important in the management of Fusarium foot rot. 相似文献