首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
水稻雄配子发育是水稻得以繁殖的关键发育过程,同时水稻的雄性不育在水稻杂种优势利用中也发挥着重要作用。花药/花粉特异表达基因可能在雄配子发育中发挥关键作用。本研究利用CRISPR/CAS9技术对水稻品种明恢86中的花药特异表达基因OsIPA定点编辑,获得OsIPA突变体,以期研究OsIPA基因在水稻花粉发育过程中的功能。试验最终成功的对OsIPA基因第1外显子上的2个不同的靶位点进行了定点突变,经检测发现有24株T0代在相应的靶位点发生了突变,共有8种不同的类型,包括碱基缺失、替换以及单碱基的插入等不同类型。  相似文献   

2.
小鼠性腺特异表达基因GSE的表达特征研究   总被引:2,自引:0,他引:2  
采用RT-PCR和原位杂交的方法检测了小鼠GSE(gonad-specific expression gene)基因在性腺中的表达特征.RT-PCR分析表明,GSE mRNA在出生后第14天的小鼠的睾丸中和刚出生小鼠的卵巢中可检测到,这时间正是生殖细胞减数分裂发生的时期;原位杂交分析的结果揭示,GSE mRNA分布于精母细胞Ⅰ(粗线期)、圆形精细胞和伸长的精细胞中,这一结果与RT-PCR分析的结果相吻合.研究结果提示,GSE与配子发生过程中的减数分裂有关.  相似文献   

3.
研究组织特异表达基因对揭示植物生长发育机制具有重要的意义。通过生物信息学、RT-PCR及荧光定量PCR方法鉴定了2个水稻特异表达基因,即Os01g18840叶特异和Os01g28500茎叶颖特异表达基因。通过检测它们在PEG、NaCl、ABA及暗处理下的表达情况,发现在各种胁迫处理下,Os01g18840基因的表达受到抑制,Os01g28500基因的表达受到诱导。进一步分析它们的基因及蛋白结构特点,发现Os01g18840蛋白含有1个卷曲螺旋结构域,是1个中间纤维蛋白;Os01g28500蛋白含有1个SCP类似结构域,是与病原反应相关的蛋白。另外,对它们上游启动子区的顺式元件进行分析,结果表明它们都含有大量的与叶片、叶肉细胞或绿色组织中表达相关的顺式作用元件。  相似文献   

4.
用单胚mRNA差异显示技术筛选山羊早期胚胎发育相关基因   总被引:1,自引:0,他引:1  
用单胚构建的mRNA差异显示技术,对体外培养的山羊早期2、4、8~16细胞期胚胎的基因表达进行研究,并选择1条在2细胞期胚胎特异表达的条带进行分析。结果表明:该片段与人类肽基精氨酸脱亚胺酶基因具有83%的同源性。该基因通过对组蛋白和细胞骨架蛋白翻译后的修饰作用,对早期胚胎发育过程中基因转录和表达的调控起着重要作用,是羊早期胚胎发育过程中的重要影响因子。  相似文献   

5.
水稻籼粳杂种不育性的多基因遗传不平衡   总被引:1,自引:0,他引:1  
本文研究和讨论了水稻亚种间远缘杂种不育性的起源。就杂种不育性的遗传本质,作者提出了多基因遗传不平衡假说:远缘杂种不育性的遗传属于孢子体——配子体的互作,且存在一个多基因系统支配下的一种特殊的配子体选择方式对不育性起作用。具有r个遗传分歧的基因位点(无论连锁或独立)的远缘品种杂交F_1产生的配子中分为平衡配子和不平衡配子。平衡配子的r个基因位点为亲本基因组合类型,拥有亲本之一的整套基因系统而能正常发育;而不平衡配子含有双亲的部分基因系统,由于遗传分歧双亲的基因系统在单倍性细胞中不能很好地配合协调或互补,发育过程的障碍就可能产生败育。在平衡配子和极不平衡配子之间存在各种中间类型,配子体选择按S~(r+u)进行。我们的试验结果结合过去的研究,说明水稻亚种的分化是自然选择作用于遗传变异的结果,生殖隔离是籼亚种和粳亚种连续积累的遗传分歧的产物。  相似文献   

6.
【目的】研究三倍化复制事件后白菜花粉特异表达候选基因的进化情况,为研究白菜的花粉特异表达基因提供理论依据。【方法】利用SynOrths软件及拟南芥花粉特异表达基因集,通过共线性分析获取白菜中的花粉特异表达候选基因。通过InterproScan获取这些候选基因的GO注释,并将这些GO注释划分到与花粉相关的13个大类。然后统计每个GO的基因数占不同拷贝类型基因总数的比例,对不同拷贝类型间进行比较。进一步根据白菜3个亚基因组集,将这些候选基因划分到不同的亚基因组上。通过分析白菜花粉特异表达候选基因中串联重复基因与拟南芥基因的共线性关系,推测这些串联重复基因是在芸薹属特有的三倍化事件之前形成,还是在其之后形成。【结果】通过对拟南芥中的1 651个花粉特异表达基因进行共线性分析,在白菜中总共找到了1 962个花粉特异表达候选基因。拟南芥特异基因集里有182个串联重复基因,而白菜包含了137个串联重复基因。白菜与拟南芥在花粉特异表达基因数目上没有明显差异,因此推测这些基因的大部分拷贝可能在三倍化复制事件后发生了丢失。549个拟南芥花粉特异表达基因在白菜上找不到相应的共线性基因,白菜在进化过程中可能丢失掉了这部分基因。拟南芥花粉特异表达基因中有898个串联重复基因在白菜中对应单或多拷贝的非串联重复基因。在白菜中对应单拷贝基因的拟南芥基因数目为480个,而且所占比例高达53.5%。另外,322个基因在白菜中对应两拷贝,比例约为35.8%。而在白菜中对应三拷贝的拟南芥基因只有96个,大约占总数目的10.7%。在白菜中,单拷贝和两拷贝的基因数目显著高于三拷贝,这说明三倍化后白菜中大部分花粉特异候选基因发生了丢失,部分两拷贝和三拷贝的基因也可能处于进化选择的过程中。白菜三拷贝基因功能在7个GO分类上的比例高于单拷贝和两拷贝,而白菜两拷贝在所有GO分类上都有分布。白菜花粉特异候选基因中的大部分串联重复基因可能在三倍化事件以后发生了基因丢失,变成了非串联重复基因。也有部分非串联重复基因在三倍化事件之后形成了串联重复基因。【结论】白菜花粉特异候选基因在芸薹属特有的三倍化事件之后处于进化之中,并且三倍化事件可能促进了3种拷贝类型基因的功能差异。  相似文献   

7.
为探明猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)N基因编码的蛋白对PEDV感染早期诊断的作用,根据PEDV CV777株N基因全序列设计一对特异性引物以扩增N基因,定向插入到pPM-CHis真核表达载体中构建重组表达质粒pPM-C-His-N,将重组质粒肌肉注射昆明系小鼠,以检测其在小鼠体内的表达水平;将pPM-C-His-N转染至Vero细胞,分别在基因水平和蛋白水平对N基因的表达进行检测,并采用间接免疫荧光试验(indirect immunofluorescence assay,IFA)检测N蛋白在细胞中的表达分布情况。结果表明,重组质粒在基因水平和蛋白水平均成功表达,免疫小鼠血清中抗体的效价为1∶51 200,Western-blot结果显示,免疫血清能与重组N蛋白发生特异性反应,说明实验成功构建了重组真核表达质粒pPM-C-His-N,且在Vero细胞内检测到了绿色荧光,为PEDV诊断方法的建立及致病机制的研究奠定基础。  相似文献   

8.
兰科Orchidaceae植物具有唇瓣、蕊柱等独特花形结构。近年来,关于兰科植物开花调控的研究取得了一定的进展,已分离鉴定出一些花发育调控基因,包括花器官特异基因及一些花分生组织特异基因。研究表明: MADS-box等基因在兰花的成花转换及花器官形成过程中起重要作用,特别是B类基因的表达及功能可能与兰花结构的特异性及多样性有关。表1参33  相似文献   

9.
棉纤维特异表达蓝铜蛋白基因(GhBCP1)的克隆与鉴定   总被引:1,自引:1,他引:0  
【目的】对从棉纤维细胞分离获得的基因GhBCP1进行序列和表达分析,初步分析其功能。【方法】采用mRNA荧光差异显示结合cDNA末端快速扩增技术克隆基因全长cDNA序列,用生物信息学方法对获得的cDNA序列及推定氨基酸序列进行分析,并用荧光实时定量PCR法研究基因在不同组织中的表达。【结果】克隆了一个棉纤维特异表达基因的全长cDNA,命名为GhBCP1(GenBank登录号:EF222282),该cDNA全长721bp,含有一个编码176个氨基酸蛋白的开放阅读框。BLAST分析表明该基因所编码产物为一个蓝铜蛋白。Southern杂交分析表明该基因在陆地棉(Gossypium hirsytum L.)中有2个拷贝。实时荧光定量PCR分析发现该基因在棉花纤维细胞特异表达,在纤维发育过程中,GhBCP1转录产物的累积主要发生在纤维细胞发育由伸长向次生壁合成转换阶段。【结论】GhBCP1基因的组织特异性和发育阶段性表达初步证明该基因的功能可能与次生壁合成的起始密切相关。  相似文献   

10.
为构建肌肉中特异表达真核载体,本试验以PGL4.10质粒为骨架,利用基因合成、酶切连接方法获得重组载体,同时利用红色荧光蛋白基因DsRed2作为标记基因来检测重组载体在非肌源细胞和肌细胞中的表达情况。结果表明,成功构建了含有肌球蛋白轻链基因MLC启动子及其增强子的肌肉中特异表达载体,通过mRNA和蛋白水平检测,该表达载体在非肌源性细胞和肌细胞中均不表达DsRed2,只在分化的肌细胞中表达DsRed2。该表达载体的构建为制备肌肉中特异表达的转基因动物奠定了基础。  相似文献   

11.
Epigenetic reprogramming in mammalian development   总被引:1,自引:0,他引:1  
Reik W  Dean W  Walter J 《Science (New York, N.Y.)》2001,293(5532):1089-1093
DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its function. Genomic methylation patterns in somatic differentiated cells are generally stable and heritable. However, in mammals there are at least two developmental periods-in germ cells and in preimplantation embryos-in which methylation patterns are reprogrammed genome wide, generating cells with a broad developmental potential. Epigenetic reprogramming in germ cells is critical for imprinting; reprogramming in early embryos also affects imprinting. Reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals, and in the erasure of acquired epigenetic information. A role of reprogramming in stem cell differentiation is also envisaged. DNA methylation is one of the best-studied epigenetic modifications of DNA in all unicellular and multicellular organisms. In mammals and other vertebrates, methylation occurs predominantly at the symmetrical dinucleotide CpG (1-4). Symmetrical methylation and the discovery of a DNA methyltransferase that prefers a hemimethylated substrate, Dnmt1 (4), suggested a mechanism by which specific patterns of methylation in the genome could be maintained. Patterns imposed on the genome at defined developmental time points in precursor cells could be maintained by Dnmt1, and would lead to predetermined programs of gene expression during development in descendants of the precursor cells (5, 6). This provided a means to explain how patterns of differentiation could be maintained by populations of cells. In addition, specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed. Neat and convincing as this model is, it is still largely unsubstantiated. While effects of methylation on expression of specific genes, particularly imprinted ones (7) and some retrotransposons (8), have been demonstrated in vivo, it is still unclear whether or not methylation is involved in the control of gene expression during normal development (9-13). Although enzymes have been identified that can methylate DNA de novo (Dnmt3a and Dnmt3b) (14), it is unknown how specific patterns of methylation are established in the genome. Mechanisms for active demethylation have been suggested, but no enzymes have been identified that carry out this function in vivo (15-17). Genomewide alterations in methylation-brought about, for example, by knockouts of the methylase genes-result in embryo lethality or developmental defects, but the basis for abnormal development still remains to be discovered (7, 14). What is clear, however, is that in mammals there are developmental periods of genomewide reprogramming of methylation patterns in vivo. Typically, a substantial part of the genome is demethylated, and after some time remethylated, in a cell- or tissue-specific pattern. The developmental dynamics of these reprogramming events, as well as some of the enzymatic mechanisms involved and the biological purposes, are beginning to be understood. Here we look at what is known about reprogramming in mammals and discuss how it might relate to developmental potency and imprinting.  相似文献   

12.
13.
14.
Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a major source of this variability, and its physiological consequences have been topics of intense research for the last decade. Several recent studies have measured variability in protein and messenger RNA levels, and they have discovered strong connections between noise and gene regulation mechanisms. When integrated with discrete stochastic models, measurements of cell-to-cell variability provide a sensitive "fingerprint" with which to explore fundamental questions of gene regulation. In this review, we highlight several studies that used gene expression variability to develop a quantitative understanding of the mechanisms and dynamics of gene regulation.  相似文献   

15.
16.
前期研究发现,HOPX基因在鸡脂肪组织高表达,为了解该基因在脂肪发育过程中的作用,采用RT-PCR方法,扩增和克隆鸡HOPX基因全长CDS区,并进行序列分析;采用real-time RT-PCR和半定量RT-PCR的方法,开展了HOPX基因的组织表达谱分析、HOPX基因在东北农业大学肉鸡高、低脂双向选择品系脂肪组织发育过程中的表达差异分析以及鸡脂肪细胞分化过程中的表达分析。研究结果显示,鸡HOPX基因的全长CDS区为222 bp,编码73个氨基酸。HOPX基因在鸡的多种组织中表达,其中,在脂肪组织中的表达量最高;在高、低脂系肉鸡的脂肪组织生长发育过程中,HOPX基因的表达均随年龄增长而上升,且高脂系鸡HOPX基因的表达量高于低脂系;在鸡脂肪细胞分化过程中,HOPX基因的表达呈上升趋势。HOPX基因的表达分析结果提示,该基因在鸡脂肪组织生长发育过程中发挥作用。  相似文献   

17.
18.
Hoxc13 has an important role in controlling hair formation. In this study, we examine the Hoxc13 RNA expression pattern of skin during embryo development. The result indicated that changes of the Hoxe13 gene expression and thickness of skin have a similar trend during hair follicle morphogenesis. In interpreting these results, we investigated whether the regulation motifs is in Hoxc13 intron, which is a 5.4 kb fragment. To blast with other mammals, we found a very conservative region in all mammal animals and two regions in livestock, such as cow, sheep, horse, dog, and so on, which are not in other Hox genes. We have examined putative pre-miRNA in this region, providing an entry point for elucidating currently unknown mechanisms that are required for regulating quantitative levels of Hoxc13 gene expression.  相似文献   

19.
In mammals different isoforms of myosin heavy chain are encoded by the members of a multigene family. The expression of each gene of this family is regulated in a tissue- and developmental stage-specific manner as well as by hormonal and various pathological stimuli. In this study the molecular basis of isoform switches induced in myosin heavy chain by thyroid hormone was investigated. The expression of the myosin heavy chain gene family was analyzed in seven different muscles of adult rats subjected to hypo- or hyperthyroidism with complementary DNA probes specific for six different myosin heavy chain genes. The results demonstrate that all six genes are responsive to thyroid hormone. More interestingly, the same myosin heavy chain gene can be regulated by thyroid hormone in highly different modes, even in opposite directions, depending on the tissue in which it is expressed. Furthermore, the skeletal embryonic and neonatal myosin heavy chain genes, so far considered specific to these two developmental stages, can be reinduced by hypothyroidism in specific adult muscles.  相似文献   

20.
Although microbes have been classically viewed as pathogens, it is now well established that the majority of host-bacterial interactions are symbiotic. During development and into adulthood, gut bacteria shape the tissues, cells, and molecular profile of our gastrointestinal immune system. This partnership, forged over many millennia of coevolution, is based on a molecular exchange involving bacterial signals that are recognized by host receptors to mediate beneficial outcomes for both microbes and humans. We explore how specific aspects of the adaptive immune system are influenced by intestinal commensal bacteria. Understanding the molecular mechanisms that mediate symbiosis between commensal bacteria and humans may redefine how we view the evolution of adaptive immunity and consequently how we approach the treatment of numerous immunologic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号