首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Tropical peatlands are unique and globally important ecosystems for carbon storage that are generally considered nutrient poor. However, different nutrient and trace element concentrations in these complex ecosystems and their interactions with carbon emissions are largely unknown. The objective of this research was to explore the concentrations of macro‐ and micronutrients and othertrace elements in surface peats, and their relationship with greenhouse gas emissions in North Selangor peatlands subjected to different land use. All nutrient and trace element concentrations except chromium exhibited significant differences between sites. Most macronutrients and some micronutrients showed significant differences between seasons, typically with a reduction over time from wet to dry seasons, possibly due to leaching. CO2 emissions were positively related to organic matter content and manganese concentrations and negatively correlated with selenium. CH4 emissions were positively correlated with organic matter content, manganese, copper, barium, cobalt and aluminium, and negatively correlated with molybdenum, selenium, lithium and vanadium. This research has detected loss of essential nutrients over time, aiding to increase nutrient limitation in tropical peatlands due to drainage. The observed significant correlation between trace elements and greenhouse gas emissions strengthens the importance of including trace element analyses in understanding the biogeochemical functions of these understudied peatlands.  相似文献   

2.
3.
Abstract

Nitrous oxide (N2O) emissions were measured monthly over 1 year in three ecosystems on tropical peatland of Sarawak, Malaysia, using a closed-chamber technique. The three ecosystems investigated were mixed peat swamp forest, sago (Metroxylon sagu) and oil palm (Elaeis guineensis) plantations. The highest annual N2O emissions were observed in the sago ecosystem with a production rate of 3.3 kg N ha?1 year?1, followed by the oil palm ecosystem at 1.2 kg N ha?1 year?1 and the forest ecosystem at 0.7 kg N ha?1 year?1. The N2O emissions ranged from –3.4 to 19.7 µg N m?2 h?1 for the forest ecosystem, from 1.0 to 176.3 µg N m?2 h?1 for the sago ecosystem and from 0.9 to 58.4 µg N m?2 h?1 for the oil palm ecosystem. Multiple regression analysis showed that N2O production in each ecosystem was regulated by different variables. The key factors influencing N2O emissions in the forest ecosystem were the water table and the NH+ 4 concentration at 25–50 cm, soil temperature at 5 cm and nitrate concentration at 0–25 cm in the sago ecosystem, and water-filled pore space, soil temperature at 5 cm and NH+ 4 concentrations at 0–25 cm in the oil palm ecosystem. R2 values for the above regression equations were 0.57, 0.63 and 0.48 for forest, sago and oil palm, respectively. The results suggest that the conversion of tropical peat swamp forest to agricultural crops, which causes substantial changes to the environment and soil properties, will significantly affect the exchange of N2O between the tropical peatland and the atmosphere. Thus, the estimation of net N2O production from tropical peatland for the global N2O budget should take into consideration ecosystem type.  相似文献   

4.
5.
A survey was conducted for assessment of soil fertility status, leaf nutrient concentration and finding yield-limiting nutrients of oil palm (Elaeis guineensis Jacq.) plantations in Mizoram state situated in the northeastern part of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K), available phosphorus (P) (Bray's-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulfur (S) (CaCl2-S), and hot-water-soluble boron (B) (HWB) content in surface (0–20 cm depth) and subsurface (20–40 cm depth) soil layers varied widely. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions, and DRIS indices were computed. As per DRIS indices, the order of requirement of nutrients was found to be B > K > Mg > P > nitrogen (N). Optimum leaf nutrient ranges as per DRIS norms varied from 1.91% to 2.95%, 0.46% to 0.65%, 0.63% to 1.00%, 0.48% to 0.88%, and 9.41 to 31.0 mg kg?1 for N, P, K, Mg, and B, respectively. On the basis of DRIS-derived optimum ranges, 32%, 9%, 27%, 12%, and 12% leaf samples had less than optimum concentration of N, P, K, Mg, and B, respectively. The optimum ranges developed could be used as a guide for routine diagnostic and advisory purpose for efficient fertilizer application.  相似文献   

6.
Observations of the vegetative and reproductive biomass produced annually and the mineral element contents have been conducted on diverse oil palm plant materials tested in a genetic test in Indonesia. The results show that the nutrient uptake (for trunk growth, leaf renewal and bunch export) greatly varies (CV = 10% for N uptake and 17% for K uptake) with the origins of the planting materials considered. For equivalent production, the uptake in nutrients of certain plant material may differ very significantly; for the same level of uptake in nutrients, production can vary significantly. This study supports the hypothesis that the optimal nutrient thresholds are intrinsically linked to the plant material. It assumes that some planting materials have different needs and that a fertilizer regime could be adapted to their specific needs without losses in performance. To confirm these assumptions, the need of implementing specific experimental devices with differentiated fertilization regimes is discussed.  相似文献   

7.
8.
Abstract

Methane flux was measured monthly from August 2002 to July 2003 at an oil palm plantation on tropical peatland in Sarawak, Malaysia, using a closed chamber technique. Urea was applied twice, once in November 2002 and once in May 2003. The monthly CH4 flux ranged from ?32.78 to 4.17 µg C m?2 h?1. Urea applications increased CH4 emissions in the month of application and emissions remained slightly higher a month later before the effect disappeared in the third month after application (i.e. back to CH4 uptake). This effect was the result of increased soil NH+ 4 content that was not immediately absorbed by the oil palm following urea application, which reduced the oxidation of CH4, resulting in its enhanced emission. By using the Cate–Nelson linear-plateau model, the critical soil NH+ 4 content causing CH4 emissions in the oil palm ecosystem was 42.75 mg kg?1 soil. However, the inhibitory effect of NH+ 4 on the oxidation of CH4 was mitigated by low rainfall and the pyrophosphate solubility index (PSI), where the former might increase oxidation of CH4 and the latter was a reflection of the low soluble substrate for methane production. Thus, the splitting and timing of urea applications are important not only to optimize oil palm yield, but also to reduce soil NH+ 4 content to minimize CH4 emissions and, therefore, its potential negative impact on the environment.  相似文献   

9.
Wetlands are major natural sources of greenhouse gases (GHGs). In central and southern Africa, one of the most extensive wetlands are dambos (seasonal wetlands) which occupy 20–25% of land area. However, there are very little data on GHG methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) emissions from dambos, and this study presents the first estimates from dambos in Zimbabwe. The objective was to evaluate the effects of catena positions; upland, dambo mid-slope and dambo bottom, on GHG emissions along an undisturbed dambo transect. Methane emissions were ?0.3, 29.5 and ?1.3 mg m?2 hr?1, N2O emission were 40.1, 3.9 and 5.5 µg m2 hr?1, while CO2 emissions were 2648.9, 896.2 and 590.1 mg m?2 hr?1 for upland, mid-slope and bottom catena, respectively. Our results showed that uplands were important sources of N2O and CO2, and a sink for CH4, while the dambo mid-slope position was a major source of CH4, but a weak source of CO2 and N2O. Dambo bottom catena was weak source GHGs. Overall, dambos were major sources of CH4 and weak sources of N2O and CO2.We concluded that, depending on catenal position, dambos can be major or minor sources of GHGs.  相似文献   

10.
Field experiments were conducted at Owo, southwest Nigeria to select organic fertilizer treatments most suitable for sustaining high soil fertility and yam productivity on a nutrient-depleted tropical Alfisol. Eight organic fertilizer treatments were applied at 20 t ha?1 with a reference treatment inorganic fertilizer (NPK 15–15–15) at 400 kg ha?1 and natural soil fertility (control), laid out in a randomized complete block design with three replications. Results showed that organic fertilizers significantly increased (p = 0.05) tuber weight and growth of yam, soil and leaf N, P, K, Ca and Mg, soil pH and organic C concentrations compared with the NSF (control). The oil palm bunch ash + poultry manure treatment increased tuber weight, vine length, number of leaves and leaf area of yam by 66, 25, 21 and 52%, respectively, compared with inorganic fertilizer (NPK) and 37, 22, 19 and 44%, respectively, compared with poultry manure alone. Sole or mixed forms of organic fertilizers showed significant improvement in soil physical conditions compared with IF (NPK) and NSF (control). Synergistic use of oil palm bunch ash + poultry manure at 10 t ha?1 each was most effective for sustainable management of soils and for improving agronomic productivity of yam.  相似文献   

11.
12.
13.
喀斯特小流域土壤含水率空间异质性及其影响因素   总被引:3,自引:4,他引:3  
该文基于网格取样(80 m×80 m),利用地统计学和经典统计学方法,研究了典型喀斯特小流域旱季表层(0~10 cm)土壤含水率(soil moisture content,SMC)的空间变异特征,并分析了其与容重(bulk density,BD)、毛管孔隙度(capillary porosity,CP)、非毛管孔隙度(non-capillary porosity,NCP)、土壤有机碳(soil organic carbon,SOC)、碎石含量(rock fragment content,RC)等土壤理化性质以及坡度(slope gradient,SG)、坡向(slope aspect,SA)、裸岩率(bare rock,BR)等地形因子的关系。结果显示,SMC半方差函数的最优拟合模型为指数模型,变程为381.00 m,块基比为0.382,属于中等程度的空间相关性。普通克里格插值结果显示,SMC呈现出随海拔升高而降低的分布规律。Pearson相关分析表明,除SOC外,其他土壤理化指标均对SMC有显著影响(p0.05);各地形因子中仅SG对SMC有显著影响。协方差分析表明,RC、CP和NCP对SMC的方差解释达到显著水平(p0.05),地形部位(上坡、中坡、下坡、洼地)、土地利用类型(乔木林、灌木林、灌草丛、耕地)及二者的交互作用均未达到显著水平。这说明土壤理化性质是影响SMC的直接因素,地形部位和土地利用类型均通过改变土壤理化性质来影响SMC。该结果有利于辨别喀斯特小流域旱季SMC的主要影响因素,从而为该地区土壤水源涵养功能的提高及流域水文过程研究提供科学依据。  相似文献   

14.
We compared the effects of young high‐density plantations of three native trees (legumes: Albizia lebbeck, A. procera and a non‐legume: Tectona grandis) and one fast growing woody grass species (Dendrocalamus strictus) on carbon and nutrients stock and their accretion rates in a redeveloping soil. This soil was the early phase of mine spoil restoration in a dry tropical environment. The soil bulk density and accumulation rates of C, N and P at 0–10 and 10–20 cm soil depth were determined in 4‐ to 5‐year‐old plantations. The total nutrient stock of soil C, N, P significantly varied in redeveloping soil according to plantation type, plantation age and soil depth. A. lebbeck greatly improved C and N content followed by D. strictus, A. procera and T. grandis plantations. However, accretion rates of C and N were substantially high in the D. strictus plantation. Therefore, D. strictus, contributed significantly to the redevelopment of mine spoil soils. In the case of total P nutrient, A. procera showed the greatest amount among the plantations but the accretion rate was also high for T. grandis followed by A. procera, A. lebbeck and D. strictus. This study indicates that all N‐fixing species may not be equally efficient in improving soil qualities especially N in the soil. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

There is limited knowledge about the differences in carbon availability and metabolic quotients in temperate volcanic and tropical forest soils, and associated key influencing factors. Forest soils at various depths were sampled under a tropical rainforest and adjacent tea garden after clear-cutting, and under three temperate forests developed on a volcanic soil (e.g. Betula ermanii and Picea jezoensis, and Pinus koraiensis mainly mixed with Tilia amurensis, Fraxinus mandshurica and Quercus mongolica), to study soil microbial biomass carbon (MBC) concentration and metabolic quotients (qCO2, CO2-C/biomass-C). Soil MBC concentration and CO2 evolution were measured over 7-day and 21-day incubation periods, respectively, along with the main properties of the soils. On the basis of soil total C, both CO2 evolution and MBC concentrations appeared to decrease with increasing soil depth. There was a maximal qCO2 in the 0–2.5 cm soil under each forest stand. Neither incubation period affected the CO2 evolution rates, but incubation period did induce a significant difference in MBC concentration and qCO2 in tea soil and Picea jezoensis forest soil. The conversion of a tropical rainforest to a tea garden reduced the CO2 evolution and increased the qCO2 in soil. Comparing temperate and tropical forests, the results show that both Pinus koraiensis mixed with hardwoods and rainforest soil at less than 20 cm depth had a larger MBC concentration relative to soil total C and a lower qCO2 during both incubation periods, suggesting that microbial communities in both soils were more efficient in carbon use than communities in the other soils. Factor and regression analysis indicated that the 85% variation of the qCO2 in forest soils could be explained by soil properties such as the C:N ratio and the concentration of water soluble organic C and exchangeable Al (P < 0.001). The qCO2 values in forest soils, particularly in temperate volcanic forest soils, decreased with an increasing Al/C ratio in water-soluble organic matter. Soil properties, such as exchangeable Ca, Mg and Al and water-soluble organic C:N ratio, were associated with the variation of MBC. Thus, MBC concentrations and qCO2 of the soils are useful soil parameters for studying soil C availability and microbial utilization efficiency under temperate and tropical forests.  相似文献   

16.
17.
There are no reports on the effects of elevated carbon dioxide [CO2] on the fluxes of N2O, CO2 and CH4 from semi-arid wheat cropping systems. These three soil gas fluxes were measured using closed chambers under ambient (420 ± 18 μmol mol−1) and elevated (565 ± 37 μmol mol−1) at the Free-Air Carbon dioxide Enrichment experimental facility in northern China. Measurements were made over five weeks on a wheat crop (Triticum aestivum L. cv. Zhongmai 175). Elevated [CO2] increased N2O and CO2 emission from soil by 60% and 15%, respectively, but had no significant effect on CH4 flux. There was no significant interaction between [CO2] and N application rate on these gas fluxes, probably because soil N was not limiting. At least 22% increase in C storage is required to offset the observed increase in greenhouse gas emissions under elevated [CO2].  相似文献   

18.
We investigated spatial structures of N2O, CO2, and CH4 fluxes during a relatively dry season in an Acacia mangium plantation stand in Sumatra, Indonesia. The fluxes and soil properties were measured at 1-m intervals in a 1 × 30-m plot (62 grid points) and at 10-m intervals in a 40 × 100-m plot (55 grid points) at different topographical positions of the upper plateau, slope, and valley bottom in the plantation. Spatial structures of each gas flux and soil property were identified using geostatistical analysis. The means (±SD) of N2O, CO2, and CH4 fluxes in the 10-m grids were 0.54 (±0.33) mg N m−2 d−1, 2.81 (±0.71) g C m−2 d−1, and −0.84 (±0.33) mg C m−2 d−1, respectively. This suggests that A. mangium soils function as a larger source of N2O than natural forest soils in the adjacent province on Sumatra during the relatively dry season, while CO2 and CH4 emissions from the A. mangium soils were less than or consistent with those in the natural forest soils. Multiple spatial dependence of N2O fluxes within 3.2 m (1-m grids) and 35.0 m (10-m grids), and CO2 fluxes within 1.8 m (1-m grids) and over 65 m (10-m grids) was detected. From the relationship among N2O and CO2 gas fluxes, soil properties, and topographic elements, we suggest that the multiple spatial structures of N2O and CO2 fluxes are mainly associated with soil resources such as readily mineralizable carbon and nitrogen in a relatively dry season. The soil resource distributions were probably controlled by the meso- and microtopography. Meanwhile, CH4 fluxes were spatially independent in the A. mangium soils, and the water-filled pore space appeared to mainly control the spatial distribution of these fluxes.  相似文献   

19.
ABSTRACT

The influence of long-term application of different types of compost on rice grain yield, CH4 and N2O emissions, and soil carbon storage (0 ? 30 cm) in rice paddy fields was clarified. Two sets of paddy fields applied with rice straw compost or livestock manure compost mainly derived from cattle were used in this study. Each set comprised long-term application (LT) and corresponding control (CT) plots. The application rates for rice straw compost (42 years) and livestock manure compost (41 years in total with different application rates) were 20 Mg fresh weight ha–1. Soil carbon storage increased by 33% and 37% with long-term application of rice straw compost and livestock manure compost, respectively. The soil carbon sequestration rate by the organic matter application was 23% higher with the livestock manure compost than with the rice straw compost. The rice grain yield in the LT plot was significantly higher than that in the corresponding CT plot with both types of compost. Although the difference was not significant in the rice straw compost, cumulative CH4 emissions increased with long-term application of both composts. Increase rate of CH4 emission with long-term application was higher in the livestock manure compost (99%) than that in the rice straw compost (26%). In both composts, the long-term application did not increase N2O emission significantly. As with the rice straw compost, the increase in CH4 emission with the long-term application of livestock manure compost exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was positive, indicating a net increase in the GHG emissions. The increase in CH4 and net GHG emissions owing to the long-term application of the livestock manure compost could be higher than that of the rice straw compost owing to the amount of applied carbon, the quality of compost and the soil carbon accumulation. The possibility that carbon sequestration in the subsoil differs depending on the type of composts suggests the importance of including subsoil in the evaluation of soil carbon sequestration by long-term application of organic matter.  相似文献   

20.
Soil organic carbon (SOC) has an important role in improving soil quality and sustainable production. A long-term fertilization study was conducted to investigate changes in SOC and its relation to soil physical properties in a rice paddy soil. The paddy soils analyzed were subjected to different fertilization practices: continuous application of inorganic fertilizers (NPK, N–P–K = 120–34.9–66.7 kg ha−1 yr−1 during 1967–1972 and 150–43.7–83.3 kg ha−1 yr−1 from 1973 to 2007), straw based compost (Compost, 10 Mg ha−1 yr−1), a combination of NPK + Compost, and no fertilization (control). Soil physical properties were investigated at rice harvesting stage in the 41st year for analyzing the relationship with SOC fraction. Continuous compost application increased the total SOC concentration in plough layers and improved soil physical properties. In contrast, inorganic or no fertilization markedly decreased SOC concentration resulting to a deterioration of soil physical health. Most of the SOC was the organo-mineral fraction (<0.053 mm size), accounting for over 70% of total SOC. Macro-aggregate SOC fraction (2–0.25 mm size), which is used as an indicator of soil quality rather than total SOC, covered 8–17% of total SOC. These two SOC fractions accumulated with the same tendency as the total SOC changes. Comparatively, micro-aggregate SOC (0.25–0.053 mm size), which has high correlation with physical properties, significantly decreased with time, irrespective of the inorganic fertilizers or compost application, but the mechanism of decrease is not clear. Conclusively, compost increased total SOC content and effective SOC fraction, thereby improving soil physical properties and sustaining production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号