首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7° from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds.  相似文献   

2.
The aim of this study was to compare physical, mechanical and biological properties of 3-dimensional scaffolds prepared from Bombyx mori silk fibroin (SF), fibroin blended with collagen (SF/C), and fibroin blended with gelatin (SF/G) using a freeze-drying technique. The prepared scaffolds were sponge-like structure that exhibited homogeneous porosity with highly interconnected pores. Average pore size of these scaffolds ranged from 65–147 μm. All biodegradable scaffolds were capable of water absorption of 90 %. The degradation behavior of these scaffolds could be controlled by varying the amount of blended polymer. The SF/C and SF/G scaffolds showed higher compressive modulus than that of SF scaffolds which could be attributed to the thicker pore wall observed in the blended constructs. The less crystalline SF structure was observed in SF/G scaffolds as compared to SF/C scaffolds. Thus, the highest compressive modulus was observed on SF/C matrix. To investigate the feasibility of the scaffolds for cartilage tissue engineering application, rat articular chondrocytes were seeded onto the scaffolds. The MTT assay demonstrated that blending collagen or gelatin into SF sponge facilitated cell attachment and proliferation better than SF scaffolds. The blended SF scaffolds possessed superior physical, mechanical and biological properties in comparison to SF scaffolds and showed high potential for application in cartilage tissue engineering.  相似文献   

3.
Application of electrospun nanofibrous scaffolds has received immense attention in tissue engineering. Fabrication of scaffolds with appropriate electrical properties plays a key role in neural tissue engineering. Since fibers orientation in the scaffolds affects the growth and proliferation of the cells, this study aimed to prepare aligned electrospun conductive nanofibers by mixing 1 %, 10 % and 18 % (w/v) doped polyaniline (PANI) with polycaprolactone (PCL)/poly lactic-coglycolic acid (PLGA) (25/75) solution through the electrospinning process. The fibers diameter, hydrophilicity and conductivity were measured. In addition, the shape and proliferation of the nerve cells seeded on fibers were evaluated by MTT cytotoxicity assay and scanning electron microscopy. The results revealed that the conductive nanofibrous scaffolds were appropriate substrates for the attachment and proliferation of nerve cells. The electrical stimulation enhanced neurite outgrowth compared to those PLGA/PCL/PANI scaffolds that were not subjected to electrical stimulation. As polyaniline ratio increases, electric stimulation through nanofibrous PLGA/PCL/PANI scaffolds results in cell proliferation enhancement. However, a raise more than 10 % in polyaniline will result in cell toxicity. It was concluded that conductive scaffolds with appropriate ratio of PANI along with electrical stimulation have potential applications in treatment of spinal cord injuries.  相似文献   

4.
There are several reviews that separately cover different aspects of fish gelatin including its preparation, characteristics, modifications, and applications. Its packaging application in food industry is extensively covered but other applications are not covered or covered alongside with those of collagen. This review is comprehensive, specific to fish gelatin/hydrolysate and cites recent research. It covers cosmetic applications, intrinsic activities, and biomedical applications in wound dressing and wound healing, gene therapy, tissue engineering, implants, and bone substitutes. It also covers its pharmaceutical applications including manufacturing of capsules, coating of microparticles/oils, coating of tablets, stabilization of emulsions and drug delivery (microspheres, nanospheres, scaffolds, microneedles, and hydrogels). The main outcomes are that fish gelatin is immunologically safe, protects from the possibility of transmission of bovine spongiform encephalopathy and foot and mouth diseases, has an economic and environmental benefits, and may be suitable for those that practice religious-based food restrictions, i.e., people of Muslim, Jewish and Hindu faiths. It has unique rheological properties, making it more suitable for certain applications than mammalian gelatins. It can be easily modified to enhance its mechanical properties. However, extensive research is still needed to characterize gelatin hydrolysates, elucidate the Structure Activity Relationship (SAR), and formulate them into dosage forms. Additionally, expansion into cosmetic applications and drug delivery is needed.  相似文献   

5.
Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.  相似文献   

6.
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.  相似文献   

7.
In this study, to improve the cellular biocompatibility of PVP-PCL micro- and nanofiber scaffold, a novel electrospun collagen/PVP-PCL micro- and nanofiber scaffold was sucessfully prepared assisted by ultrasonic irradiation using chloroform/ethanol mixtures as solvent. The micro- and nanofibers of the electrospun PCL-PVP scaffolds still presented compact inter-fiber entanglement and three-dimensional netlike network with some certain range of pore space after introducing collagen. The incorporated collagen phase was dispersed as inclusions within the electrospun fibers, and then could be easily released by immersing the scaffold in Hanks simulated body fluid. Meanwhile, the integral triple helix structure of collagen could be maintained after blending with the PVP-PCL mixture due to the weak intermolecular interactions. Furthermore, the suitable mechanical and degradation properties of the PVP-PCL scaffold were still reserved after introducing collagen, and the introduction of collagen could further promote the thermostability of the PVP-PCL scaffold. Above all, the collagen/PVP-PCL scaffold showed no cytotoxicity, better cell proliferation, and improved viability of primary fibroblasts than the PVP-PCL scaffold. In conclusion, blending collagen with the PVP-PCL mixture in this study has potential for promoting the biocompatibility of PVP-PCL micro- and nanofiber scaffolds for tissue engineering.  相似文献   

8.
Produced via electrospinning, polyurethane (PU) scaffolds have always attracted the interest of medical applications due of their unique properties such as good adhesion, biocompatibility and excellent mechanical strength. However, the poor hydrophilicity and hemocompatibility of PU presented a problem during PU’s application in the manufacturing of biomedical materials. We hypothesized that the incorporation of polyethylene glycol (PEG) and phosphatidylcholine (PC) into electrospinning solution of PU could improve the cell affinity and hemocompatibility. This research focused on fabricating hybrid PU-PEG and PU-PC random/aligned scaffolds through electrospinning technique and comparing their properties as a potential biocompatible scaffold for vascular tissue engineering. PC was doped into a PU solution in order to prepare an electrospun scaffold through the electrospinning technology while crosslinked electrospun PUPEG hybrid scaffolds were fabricated by photoinduced polymerization. The contact angle dramatically decreased from 122.3±0.8° to 39.1±0.8° with doping of PC in electrospinning solution while it decreased from 122.3±0.8° to 41.6±0.8° with doping of PEG. Furthermore, the mechanical properties of PU scaffolds were altered significantly by the addition of PC. The hemolysis and cytocompatibility assays demonstrated that these composite scaffolds could potentially be used as a smalldiameter vascular graft.  相似文献   

9.
Tissue engineering is one exciting approach to treat patients who need a new organ or tissue. A critical element in this approach is the polymer scaffold, as it provides a space for new tissue formation and mimics many roles of natural extracellular matrices. In this review, we describe several design parameters of polymer matrices that can significantly affect cellular behavior, as well as various polymers which are frequently used to date or potentially useful in many tissue engineering applications. Interactions between cells and polymer scaffolds, including specific receptor-ligand interactions, physical and degradation feature of the scaffolds, and delivery of soluble factors, should be considered in the design and tailoring of appropriate polymer matrices to be used in tissue engineering applications, as these interactions control the function and structure of engineered tissues.  相似文献   

10.
The formation of thrombosis has limited the applications of small diameter vascular in cardiovascular diseases. In order to improve the anticoagulant activities of scaffolds, this study combined fucoidan with CS/PVA and investigated the complete physicochemical and mechanical characterization of the scaffolds to evaluate the feasibility of Fucoidan/CS/PVA scaffolds used in vascular tissue engineering. The SEM graphs show a well defined and interconnected pore structure and the nanofiber diameters are ranging from 341 nm to 482 nm. After immersing in PBS for 5 days, the tensile strength of the crosslinked scaffolds was 722±38 kPa while the elongation at break was 35.5±1.6 %. Besides, added with fucoidan, the scafflolds showed lower rate of plate adhesion (14.75±2.10 %) and markedly prolonged the APTT and TT. Furthermore, owing to the great water uptake ability, sufficient porosity, enhanced drug release and low cytotoxicity, the Fucoidan/CS/PVA scaffolds might be used for vascular tissue engineering with good prospect.  相似文献   

11.
Electrospinning has been recognized as an efficient technique for the fabrication of neural tissue engineering scaffolds. Many approaches have been developed on material optimization, electrospinning techniques, and physical properties of scaffolds to produce a suitable scaffold for tissue engineering aspects. In this study, structural properties of scaffolds were promoted by controlling the speed of fiber collection without any post-processing. PLGA scaffolds, in two significantly different solution concentrations, were fabricated by the electrospinning process to produce scaffolds with the optimum nerve cell growth in a desired direction. The minimum, intermediate and maximum rate of fiber collection (0.4, 2.4, 4.8 m/s) formed Random, Aligned and Drown-aligned fibers, with various porosities and hydrophilicities. The scaffolds were characterized by fiber diameter, porosity, water contact angle and morphology. Human nerve cells were cultured on fiber substrates for seven days to study the effects of different scaffold structures on cell morphology and proliferation, simultaneously. The results of MTT assay, the morphology of cells and scaffold characterization recommend that the best structure to promote cell direction, morphology and proliferation is accessible in an optimized hydrophilicity and porosity of scaffolds, which was obtained at the collector linear speed of 2.4 m/s.  相似文献   

12.
Type-I collagen is an attractive scaffold material for tissue engineering due to its ability to self-assemble into a fibrillar hydrogel, its innate support of tissue cells through bioactive adhesion sites, and its biodegradability. However, a lack of control of material properties has hampered its utility as a scaffold. We have modified collagen via the addition of methacrylate groups to create collagen methacrylamide (CMA) using a synthesis reaction that allows retention of fundamental characteristics of native collagen, including spontaneous fibrillar self-assembly and enzymatic biodegradability. This method allows for a rapid, five-fold increase in storage modulus upon irradiation with 365 nm light. Fibrillar diameter of CMA was not significantly different from native collagen. Collagenolytic degradability of uncrosslinked CMA was minimally reduced, while photocrosslinked CMA was significantly more resistant to degradation. Live/Dead staining demonstrated that a large majority (71%) of encapsulated mesenchymal stem cells remained viable 24 h after photocrosslinking, which further increased to 81% after 72 h. This material represents a novel platform for creating mechanically heterogeneous environments.  相似文献   

13.
Biomedical engineering combines engineering and materials methods to restore, maintain, improve, or replace different types of biological tissues. In tissue engineering, following major injury, a scaffold is designed to support the local growth of cells, enabling the development of new viable tissue. To provide the conditions for the mechanical and structural properties needed for the restored tissue and its appropriate functioning, the scaffold requires specific biochemical properties in order to ensure a correct healing process. The scaffold creates a support system and requires a suitable material that will transduce the appropriate signals for the regenerative process to take place. A scaffold composed of material that mimics natural tissue, rather than a synthetic material, will achieve better results. Here, we provide an overview of natural components of marine-derived origin, the collagen fibers characterization schematic is summarized in the graphical abstract. The use of collagen fibers for biomedical applications and their performances in cell support are demonstrated in an in vitro system and in tissue regeneration in vivo.  相似文献   

14.
Natural materials and plants have a long history of medical applications due to their broad range of favorable biological functions including biocompatibility, anti-bacterial, anti-oxidant and anti-inflammatory properties. Main objective of this study was to develop alginate-chitosan-hyaluronic acid (ACH) composite fibers with controlled drug release, and liquid retention properties for better moist wound healing. The dope comprising sodium alginate was extruded into calcium chloride (CaC12) coagulation bath. The developed calcium alginate fibers were then passed through a bath containing hydrolyzed chitosan and dip coated with hyaluronic acid for 24 hours. The resulting ACH composite fibers were then rinsed with deionized water and dried using acetone. These fibers were tested for tensile properties, % swelling, liquid absorption (g/g) and controlled drug release. The results concluded that ACH composite fibers can be produced by wet spinning and have adequate tensile properties, high % swelling, liquid absorption (g/g) and controlled release of hyaluronic acid for improved wound healing.  相似文献   

15.
Artificial keratoprostheses are indispensable for visual rehabilitation in patients with end-stage corneal blindness. This study aimed to assess the biocompatibility of polyethylene terephthalate nanofibrous mats and its potential as a novel synthetic keratoprosthesis skirt material for corneal tissue engineering. Nanofibrous mats were prepared by an electrospinning method and were first treated with the CO2 plasma to yield carboxylic groups on the surface; finally, the modified PET mat was cross linked with collagen using water-soluble carbodiimide as a coupling agent. The samples were evaluated by ATR-FTIR, scanning electron microscope (SEM), contact angle, and cell culture. The cross-linking of collagen on PET surface was confirmed by ATR-FTIR spectroscopy and SEM images The 79° difference was obtained in the contact angle analysis, obtained for the collagen-cross-linked nanofibrous mat than the non-modified nanofibrous mat. Cellular investigation showed limbal epithelial progenitor cells (LEPCs) has been better adhesion, cell growth, and proliferation of collagen-crosslinked nanofibrous samples than other samples. The bioavailability of PET fibers with covalently attached collagen was found to be identical to that of PET fibers with covalent attachment is a suitable method for enhancing the biocompatibility of scaffolds special as a good skirt in keratoprosthesis designs.  相似文献   

16.
Marine collagen is an ideal material for tissue engineering due to its excellent biological properties. However, the limited mechanical properties and poor stability of marine collagen limit its application in tissue engineering. Here, collagen was extracted from the skin of tilapia (Oreochromis nilotica). Collagen-thermoplastic polyurethane (Col-TPU) fibrous membranes were prepared using tilapia collagen as a foundational material, and their physicochemical and biocompatibility were investigated. Fourier transform infrared spectroscopy results showed that thermoplastic polyurethane was successfully combined with collagen, and the triple helix structure of collagen was retained. X-ray diffraction and differential scanning calorimetry results showed relatively good compatibility between collagen and TPU.SEM results showed that the average diameter of the composite nanofiber membrane decreased with increasing thermoplastic polyurethane proportion. The mechanical evaluation and thermogravimetric analysis showed that the thermal stability and tensile properties of Col-TPU fibrous membranes were significantly improved with increasing TPU. Cytotoxicity experiments confirmed that fibrous membranes with different ratios of thermoplastic polyurethane content showed no significant toxicity to fibroblasts; Col-TPU fibrous membranes were conducive to the migration and adhesion of cells. Thus, these Col-TPU composite nanofiber membranes might be used as a potential biomaterial in tissue regeneration.  相似文献   

17.
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.  相似文献   

18.
Fish collagen has been widely used in tissue engineering (TE) applications as an implant, which is generally transplanted into target tissue with stem cells for better regeneration ability. In this case, the success rate of this research depends on the fundamental components of fish collagen such as amino acid composition, structural and rheological properties. Therefore, researchers have been trying to find an innovative raw material from marine origins for tissue engineering applications. Based on this concept, collagens such as acid-soluble (ASC) and pepsin-soluble (PSC) were extracted from a new type of cartilaginous fish, the blacktip reef shark, for the first time, and were further investigated for physicochemical, protein pattern, microstructural and peptide mapping. The study results confirmed that the extracted collagens resemble the protein pattern of type-I collagen comprising the α1, α2, β and γ chains. The hydrophobic amino acids were dominant in both collagens with glycine and hydroxyproline as major amino acids. From the FTIR spectra, α helix (27.72 and 26.32%), β-sheet (22.24 and 23.35%), β-turn (21.34 and 22.08%), triple helix (14.11 and 14.13%) and random coil (14.59 and 14.12%) structures of ASC and PSC were confirmed, respectively. Collagens retained their triple helical and secondary structure well. Both collagens had maximum solubility at 3% NaCl and pH 4, and had absorbance maxima at 234 nm, respectively. The peptide mapping was almost similar for ASC and PSC at pH 2, generating peptides ranging from 15 to 200 kDa, with 23 kDa as a major peptide fragment. The microstructural analysis confirmed the homogenous fibrillar nature of collagens with more interconnected networks. Overall, the preset study concluded that collagen can be extracted more efficiently without disturbing the secondary structure by pepsin treatment. Therefore, the blacktip reef shark skin could serve as a potential source for collagen extraction for the pharmaceutical and biomedical applications.  相似文献   

19.
The growing applications of tissue engineering technologies warrant the search and development of biocompatible materials with an appropriate strength and elastic moduli. Here, we have extensively studied a collagenous membrane (GSCM) separated from the mantle of the Giant squid Dosidicus Gigas in order to test its potential applicability in regenerative medicine. To establish the composition and structure of the studied material, we analyzed the GSCM by a variety of techniques, including amino acid analysis, SDS-PAGE, and FTIR. It has been shown that collagen is a main component of the GSCM. The morphology study by different microscopic techniques from nano- to microscale revealed a peculiar packing of collagen fibers forming laminae oriented at 60–90 degrees in respect to each other, which, in turn, formed layers with the thickness of several microns (a basketweave motif). The macro- and micromechanical studies showed high values of the Young’s modulus and tensile strength. No significant cytotoxicity of the studied material was found by the cytotoxicity assay. Thus, the GSCM consists of a reinforced collagen network, has high mechanical characteristics, and is non-toxic, which makes it a good candidate for the creation of a scaffold material for tissue engineering.  相似文献   

20.
The purpose of this study is to fabricate a smart wound dressing by hybridizing hydrophilic polyurethane foam (PUF) and alginate hydrogel. Hydrophilic PUF is used to maintain damaged tissue in a moist environment. Despite its many strong points as a wound dressing, hydrophilic PUF cannot be loaded with ingredients such as growth factors and cytokines that would enhance wound healing. Therefore, we introduce a pH-sensitive alginate hydrogel with the ability to selectively release drugs within the pH range of wounded skin. Due to the small pore size of PUF and the high viscosity of the alginate solution, the two are not easily penetrable. As such, a vacuum method is used to insert alginate hydrogel into the PUF. The optimum conditions for the vacuum method chosen are to be proposed. However, the mechanical strength of PUF decreased after containing alginate hydrogel. Therefore, Na-alginate powder for PUF, various types of crosslinking agents and jute fiber for alginate hydrogel were introduced to improve the mechanical properties of hydrogel/PUF hybrid wound dressing. Three different types of crosslinking agents are used for the gel formation. The most suitable crosslinking agent and its concentration for alginate hydrogel is also determined by the experiments. The experimental results are discussed with proper schemes and reasonable explanations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号