首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Current agricultural practice favours winter cover crops, which can not only optimize N management in field crop rotation; but also affect subsequent crops. Three field experiments were carried out in Eastern Slovenia to examine the effects of Italian ryegrass (Lolium multiflorum Lam.), winter rape (Brassica napus ssp.oleifera (Metzg.) Sinsk), subclover (Trifolium subterraneum L.), and crimson clover (Trifolium incarnatum L.) as winter cover crops on the mineral N (Nmin) content of soil and on the yield and N content of subsequent maize (Zea mays L.), fertilized with 120 kg N ha−1. Italian ryegrass and winter rape decreased soil Nmin contents before winter and in spring more than both clovers. In contrast, clovers accumulated significantly higher amounts of N in organic matter and had lower C/N ratios than winter rape and especially Italian ryegrass. In comparison to the control (bare fallow without cover crop), clovers increased the whole above ground maize dry matter yield, maize grain yield and N contents in whole above ground plants and in grain. The yields and N contents of maize following winter rape were on the same level as the control, while yields and N contents of maize following Italian ryegrass were, in two of the experiments, at the same level as the control. The effects of Italian ryegrass on the maize as subsequent crop in the third experiment were markedly negative. Maize in the control treatment exploited N much more efficiently than in treatments with cover crops. Therefore, cover crop N management should be improved, especially with a view to optimizing the timing of net N mineralization in accordance with the N demands of the subsequent crop.  相似文献   

2.
The effects of soil tillage and straw management systems on the grain yield and nitrogen use efficiency of winter wheat (Triticum aestivum L. em. Thell.) were evaluated in a cool Atlantic climate, in central Ireland between 2009 and 2011. Two tillage systems, conventional tillage (CT) and reduced tillage (RT) each with and without incorporation of the straw of the preceding crop, were compared at five levels of fertiliser N (0, 140, 180, 220 and 260 kg N ha−1).CT had a significantly higher mean grain yield over the three years but the effect of tillage varied between years. Yields did not differ in 2009 (Year 1), while CT produced significantly higher grain yields in 2010 (Year 2), while RT produced the highest yields in 2011 (Year 3). Straw incorporation had no significant effect in any year.Nitrogen application significantly increased the grain yields of all establishment treatment combinations. Nitrogen use efficiency (NUE) ranged from 14.6 to 62.4 kg grain (85% DM) kg N ha−1 and decreased as N fertiliser rate was increased.The CT system had a significantly higher mean NUE over the three years but the effect of tillage varied with years. While there was no tillage effect in years 1 and 3, CT had a significantly higher NUE than RT in year 2. Straw management system had minimal effect on NUE in any year.The effect of tillage and N rate on soil mineral N content also varied between years. While there was no tillage effect in years 1 and 3, RT had significantly larger soil N contents than CT in the spring before N application, and post-harvest in year 2. N application rates had no effect on soil N in year 1, increased residual N content in year 2 and had an inconsistent effect in year 3. Straw management had no significant effect on soil mineral N content.These results indicate that RT establishment systems can be used to produce similar winter wheat yields to CT systems in a cool Atlantic climate, providing weather conditions at establishment are favourable. The response to nitrogen is similar with both tillage systems where the crop is successfully established. Straw management system has very little effect on crop performance or nitrogen uptake.  相似文献   

3.
针对华北平原冬小麦-夏玉米轮作体系存在过量的水、氮投入问题,本研究于2008 -2010年在河北吴桥设置了传统水氮、传统水氮调整、节水减氮和最少水氮4个水氮模式,以分析减少水氮投入后冬小麦-夏玉米体系的产量、氮素利用和土壤氮残留情况.结果表明:与传统水氮相比,节水减氮模式的氮肥投入量下降55%,水分投入量下降36.6%...  相似文献   

4.
Dryland wheat is the major contributor to wheat production in the world, where water deficiency and poor soil fertility are key factors limiting wheat grain yields and nutrient concentrations. A field experiment was carried out from June 2008 to June 2011 at Shilipu (latitude 35.12°N, longitude 107.45°E and altitude 1200 m above sea level) on the Loess Plateau (a typical dryland) in China, to investigate the effects of rotation with soybean (Glycine max) green manure (GM) on grain yield, total N and total Zn concentrations in subsequent wheat (Triticum aestivum L.), and on nitrate-N and available Zn in the soil. The benefits of crop rotation with soybean GM on wheat grain yields became more evident with time. In the second and third years, the grain yields of wheat rotated with soybean GM reached 4871 and 5089 kg ha−1 at the 108 kg N ha−1 rate. These yields were 21% and 12% higher than the highest yields of wheat under a fallow-winter wheat (FW) rotation. Rotation with soybean GM reduced the amount of N fertilizer required to obtain wheat grain yields and biomass levels similar to wheat grown in the FW rotation by 20–33%. In the first 2 years, average grain N concentrations over all N rates increased by 6% and 12%, and those of Zn increased by 26% and 14% under the soybean GM-winter wheat (SW) rotation, compared with the FW rotation. The increased grain N and Zn concentrations were found to be related to the increased concentrations of nitrate-N and available Zn in the soil, particularly at the sowing of winter wheat. However, grain N and Zn concentrations were not improved by rotation with soybean GM in the third year. This was attributed to the dilution effect caused by the more grain yield increase than its nutrient export. In conclusion, planting soybean for GM in fallow fields reduced the need for N fertilizer to enhance wheat yields in this dryland region. Change in wheat grain N and Zn concentrations was related to soil nutrient concentrations, and to the balance between increased grain yield and its nutrient export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号