首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In organic agriculture, weeds and nitrogen deficiency are the main factors that limit crop production. The use of relay-intercropped forage legumes may be a way of providing ecological services such as weed control, increasing N availability in the cropping system thanks to N fixation, reducing N leaching and supplying nitrogen to the following crop. However, these ecological services can vary considerably depending on the growing conditions. The aim of this study was to identify early indicators to assess these two ecological services, thereby giving farmers time to adjust the management of both the cover crop and of the following crop.Nine field experiments were conducted over a period of three years. In each experiment, winter wheat was grown as sole crop or intercropped with one of two species of forage legumes; Trifolium repens L. or Trifolium pratense L. Two levels of fertilization were also tested (0 and 100 kg N ha−1). After the intercropping stage, the cover crop was maintained until the end of winter and then destroyed by plowing before maize was sown. Legume and weed biomass, nitrogen content and accumulation were monitored from legume sowing to cover destruction.Our results showed that a minimum threshold of about 2 t ha−1 biomass in the aboveground parts of the cover crop was needed to decrease weed infestation by 90% in early September and to ensure weed control up to December. The increase in nitrogen in the following maize crop was also correlated with the legume biomass in early September. The gain in nitrogen in maize (the following crop) was correlated with legume biomass in early September, with a minimum gain of 60 kg N ha−1 as soon as legume biomass reached more than 2 t ha−1.Legume biomass in early September thus appears to be a good indicator to predict weed control in December as well as the nitrogen released to the following crop. The indicator can be used by farmers as a management tool for both the cover crop and following cash crop. Early estimation of available nitrogen after the destruction of the forage legume can be used to adjust the supply of nitrogen fertilizer to the following crop.  相似文献   

2.
In organic grain production, weeds are one of the major limiting factors along with crop nitrogen deficiency. Relay intercropping of forage legume cover crops in an established winter cereal crop might be a viable option but is still not well documented, especially under organic conditions.Four species of forage legumes (Medicago lupulina, Medicago sativa, Trifolium pratense and Trifolium repens) were undersown in six organic wheat fields. The density and aerial dry matter of wheat, relay-intercropped legumes and weeds were monitored during wheat-legume relay intercropping and after wheat harvest until late autumn, before the ploughing of cover crops.Our results showed a large diversity of aerial growth of weeds depending on soil, climate and wheat development. The dynamics of the legume cover crops were highly different between species and cropping periods (during relay intercropping and after wheat harvest). For instance, T. repens was two times less developed than the other species during relay intercropping while obtaining the highest aerial dry matter in late autumn. During the relay intercropping period, forage legume cover crops were only efficient in controlling weed density in comparison with wheat sole crop. The control of the aerial dry matter of weeds at the end of the relay intercropping period was better explained considering both legumes and wheat biomasses instead of legumes alone. In late autumn, 24 weeks after wheat harvest, weed biomass was largely reduced by the cover crops. Weed density and biomass reductions were correlated with cover crop biomass at wheat harvest and in late autumn. The presence of a cover crop also exhibited another positive effect by decreasing the density of spring-germinating annual weeds during the relay intercropping period.  相似文献   

3.
Intensive tillage by means of mouldboard ploughing can be highly effective for weed control in organic farming, but it also carries an elevated risk for rapid humus decomposition and soil erosion. To develop organic systems that are less dependent on tillage, a two-year study at Reinhardtsgrimma and Köllitsch, Germany was conducted to determine whether certain legume cover crops could be equally successfully grown in a no-till compared with a reduced tillage system. The summer annual legumes faba bean (Vicia faba L.), normal leafed field pea (Pisum sativum L.), narrow-leafed lupin (Lupinus angustifolius L.), grass pea (Lathyrus sativus L.), and common vetch (Vicia sativa L.) were examined with and without sunflower (Helianthus annuus L.) as a companion crop for biomass and nitrogen accumulation, symbiotic nitrogen fixation (N2 fixation) and weed suppression. Total cover crop biomass, shoot N accumulation and N2 fixation differed with year, location, tillage system and species due to variations in weather, inorganic soil N resources and weed competition. Biomass production reached up to 1.65 and 2.19 Mg ha−1 (both intercropped field peas), and N2 fixation up to 53.7 and 60.5 kg ha−1 (both common vetches) in the no-till and reduced tillage system, respectively. In the no-till system consistently low sunflower performance compared with the legumes prevented significant intercropping effects. Under central European conditions no-till cover cropping appears to be practicable if weed density is low at seeding. The interactions between year, location, tillage system and species demonstrate the difficulties in cover crop species selection for organic conservation tillage systems.  相似文献   

4.
To gain information about the possible use of legume cover crops as an alternative and sustainable weed-control strategy for winter wheat (Triticum aestivum L.), an experiment was conducted at two sites in the Swiss Midlands in 2001/2002. Under organic farming conditions winter wheat was direct-drilled into living mulches established with four different legume genotypes or into control plots without cover crops. Compared to NAT (control plots without cover crops but with a naturally establishing weed community), white clover (Trifolium repens L.), subclover (Trifolium subterraneum L.), and birdsfoot trefoil (Lotus corniculatus L.) reduced the density of monocotyledonous, dicotyledonous, spring-germinating, and annual weeds by the time of wheat anthesis. Strong-spined medick (Medicago truncatula Gaertner) was less efficient in this regard. While the grain yield was reduced by 60% or more for all legumes when compared to NOWEED (control plots kept weed-free), a significant negative correlation between the dry matter of the cover crop and weeds as well as between the cover crop and the winter wheat was observed by the time of wheat anthesis. The effect of manuring (60 m3 ha−1 liquid farmyard manure) was marginal for weeds and cover crops but the additional nutrients significantly increased total winter wheat dry matter and grain yields. The suppression achieved by some legumes clearly demonstrates their potential for the control of weeds in such cropping systems. However, before living legume cover crops can be considered a viable alternative for integrated weed management under organic farming conditions, management strategies need to be identified which maximise the positive effect in terms of weed control at the same time as they minimise the negative impact on growth and yield of winter wheat.  相似文献   

5.
The major objective for clover in a winter wheat/white clover intercropping system is to supply nitrogen (N) for the wheat. A field experiment was repeated in 2 years on a loamy sand in Denmark to investigate the possibilities for increasing N supply to the winter wheat by cutting and mulching the clover between the wheat rows. The clover was cut with a weed brusher on three different dates in each year.Intercropped wheat with unbrushed clover had a lower grain yield than wheat as a sole crop. Brushing increased wheat N uptake and wheat grain yields. Intercropping with two or three brushing dates gave higher wheat yields than wheat as the sole crop. The largest increases in grain N uptake, 21–25 kg N ha−1, were obtained for the brushings around wheat flag leaf emergence. The highest yield increases with a single brushing, 0.98–1.11 Mg DM ha−1, were obtained when brushing was performed during the stem elongation phase. The largest grain yields for treatments with two brushings were obtained with a first brushing at start of stem elongation and a second around flag leaf emergence. The first brushing probably provided N to increase the wheat leaf area index and thus the light interception, while the second brushing provided N to sustain the leaf area during grain filling and reduced clover biomass and therefore competition for water. Intercropping wheat and clover increased grain N concentrations by 0.11–0.39%-point compared with wheat as a sole crop. Intercropping may thus offer possibilities for improving the bread-making quality of organically grown wheat.  相似文献   

6.
Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions. There is a lack of knowledge on whether the N contribution of legumes estimated using short-term experiments reflects the long-term effects in organic systems varying in fertility building measures. There is also limited information on how fertilizer management practices in organic crop rotations affect BNF of legumes. Therefore, this study aimed to estimate BNF in long-term experiments with a range of organic and conventional arable crop rotations at three sites in Denmark varying in climate and soils (coarse sand, loamy sand and sandy loam) and to identify possible causes of differences in the amount of BNF. The experiment included 4-year crop rotations with three treatment factors in a factorial design: (i) rotations, i.e. organic with a year of grass-clover (OGC), organic with a year of grain legumes (OGL), and conventional with a year of grain legumes (CGL), (ii) with (+CC) and without (−CC) cover crops, and (iii) with (+M) and without (−M) animal manure in OGC and OGL, and with (+F) mineral fertilizer in CGL. Cover crops consisted of a mixture of perennial ryegrass and clover (at the sites with coarse sand and sandy loam soils) or winter rye, fodder radish and vetch (at the site with loamy sand soil) in OGC and OGL, and only perennial ryegrass in CGL at all sites. The BNF was measured using the N difference method. The proportion of N derived from the atmosphere (%Ndfa) in aboveground biomass of clover grown for an entire year in a mixture with perennial ryegrass and harvested three times during the growing season in OGC was close to 100% at all three sites. The Ndfa of grain legumes in both OGL and CGL rotations ranged between 61% and 95% depending on location with mostly no significant difference in Ndfa between treatments. Cover crops had more than 92% Ndfa at all sites. The total BNF per rotation cycle was higher in OGC than in OGL and CGL, mostly irrespective of manure/fertilizer or cover crop treatments. There was no significant difference in total BNF between OGL and CGL rotations, but large differences were observed between sites. The lowest cumulated BNF by all the legume species over the 4-year rotation cycle was obtained at the location with sandy loam soil, i.e. 224–244, 96–128, and 144–156 kg N ha−1 in OGC, OGL and CGL, respectively, whereas it was higher at the locations with coarse sand and loamy sand soil, i.e. 320–376, 168–264, and 200–220 kg N ha−1 in OGC, OGL and CGL, respectively. The study shows that legumes in organic crop rotations can maintain N2 fixation without being significantly affected by long-term fertilizer regimes or fertility building measures.  相似文献   

7.
Excessive application of N fertilizer in pursuit of higher yields is common due to poor soil fertility and low crop productivity. However, this practice causes serious soil depletion and N loss in the traditional wheat cropping system in the Loess Plateau of China. Growing summer legumes as the green manure (GM) crop is a viable solution because of its unique ability to fix atmospheric N2. Actually, little is known about the contribution of GM N to grain and N utilization in the subsequent crop. Therefore, we conducted a four-year field experiment with four winter wheat-based rotations (summer fallow-wheat, Huai bean–wheat, soybean–wheat, and mung bean–wheat) and four nitrogen fertilizer rates applied to wheat (0, 108, 135, and 162 kg N/ha) to investigate the fate of GM nitrogen via decomposition, utilization by wheat, and contribution to grain production and nitrogen economy through GM legumes. Here we showed that GM legumes accumulated 53–76 kg N/ha per year. After decomposing for approximately one year, more than 32 kg N/ha was released from GM legumes. The amount of nitrogen released via GM decomposition that was subsequently utilized by wheat was 7–27 kg N/ha. Incorporation of GM legumes effectively replaced 13–48% (average 31%) of the applied mineral nitrogen fertilizer. Additionally, the GM approach during the fallow period reduced the risk of nitrate-N leaching to depths of 0–100 cm and 100–200 cm by 4.8 and 19.6 kg N/ha, respectively. The soil nitrogen pool was effectively improved by incorporation of GM legumes at the times of wheat sowing. Cultivation of leguminous GM during summer is a better option than bare fallow to maintain the soil nitrogen pool, and decrease the rates required for N fertilization not only in the Loess Plateau of China but also in other similar dryland regions worldwide.  相似文献   

8.
The reduction in crop diversity and specialization of cereal-based cropping systems have led to high dependence on synthetic nitrogen (N) fertilizer in many areas of the globe. This has exacerbated environmental degradation due to the uncoupling of carbon (C) and N cycles in agroecosystems. In this experiment, we assessed impacts of introducing grain legumes and cover crops to innovative cropping systems to reduce N fertilizer application while maintaining wheat yields and grain quality. Six cropping systems resulting from the combination of three 3-year rotations with 0, 1 and 2 grain legumes (GL0, GL1 and GL2, respectively) with (CC) or without (BF, bare fallow) cover crops were compared during six cropping seasons. Durum wheat was included as a common high-value cash crop in all the cropping systems to evaluate the carryover effects of rotation. For each cropping system, the water use efficiency for producing C in aerial biomass and yield were quantified at the crop and rotation scales. Several diagnostic indicators were analyzed for durum wheat, such as (i) grain yield and 1000-grain weight; (ii) aboveground biomass, grain N content and grain protein concentration; (iii) water- and N-use efficiencies for yield; and (iv) N harvest index. Compared to the GL0-BF cropping system, which is most similar to that traditionally used in southwestern France, N fertilizer application decreased by 58%, 49%, 61% and 56% for the GL1-BF, GL1-CC, GL2-BF and GL2-CC cropping systems, respectively. However, the cropping systems without grain legumes (GL0-BF and GL0-CC) had the highest water use efficiency for producing C in aerial biomass and yield. The insertion of cover crops in the cropping systems did not change wheat grain yield, N uptake, or grain protein concentration compared to those of without cover crops, demonstrating a satisfactory adaptation of the entire cropping system to the use of cover crops. Winter pea as a preceding crop for durum wheat increased wheat grain production by 8% (383 kg ha−1) compared to that with sunflower  the traditional preceding crop  with a mean reduction in fertilizer application of 40–49 kg N ha−1 during the six-year experiment. No differences in protein concentration of wheat grain were observed among preceding crops. Our experiment demonstrates that under temperate submediterranean conditions, properly designed cropping systems that simultaneously insert grain legumes and cover crops reduce N requirements and show similar wheat yield and grain quality attributes as those that are cereal-based.  相似文献   

9.
The advantages and disadvantages of varying mixture proportion of crimson clover (Trifolium incarnatum L.) and Italian ryegrass (Lolium multiflorum Lam.), used as winter cover crops, and cover crop biomass management before maize sowing (Zea mays L.) were studied in a series of field experiments in Eastern Slovenia. Pure stands and mixtures of cover crops on the main plots were split into different cover crop biomass management subplots: whole cover crop biomass ploughed down before maize sowing, aboveground cover crop biomass removed before ploughing and sowing, or aboveground cover crop biomass removed before sowing directly into chemically killed residues.Cover crop and cover crop biomass management affected the N content of the whole aboveground and of grain maize yields, and the differences between actual and critical N concentrations in the whole aboveground maize yield. The whole aboveground and grain maize dry matter yields, and the apparent remaining N in the soil after maize harvesting, showed significant interaction responses to cover crop × management, indicating positive and negative effects. Crimson clover in pure stand provided high, and pure Italian ryegrass provided low maize dry matter yields and N content in the yields in all the observed methods of biomass management. However, within individual management, mixtures containing high proportions of crimson clover sustained maize yields and N contents similar to those produced by pure crimson clover. Considering the expected ecological advantages of the mixtures, the results thereby support their use.  相似文献   

10.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

11.
The intercropping of rapeseed with frost-sensitive companion plants (CP) has recently been proposed as a way to mitigate the negative environmental impact of rapeseed crops. Using mixed-effect linear models, we compared the yield and weed amounts of rapeseed intercropped with different CP species with that of rapeseed as a sole crop in an unique dataset of 79 field experiments covering a wide range of climate, soil and practices conditions in the northwestern part of France, from 2009 to 2015. Bayesian model averaging procedure was used to determine the relative contributions of sites characteristics to the effects of intercropping.Before winter, field pea and faba bean had accumulated the largest amounts of dry mass, with more than 100 g m−2. Rapeseed biomass was reduced by 56% by non-legume CPs and by only 18% by legume CPs, the largest decrease being caused by pea. Non-legumes decreased the nitrogen nutrition index of rapeseed by 7%, whereas pea and faba bean increased this index by 6% and 3%, respectively. Intercropping with non-legume and legume CPs reduced weed amounts by 52% and 38% respectively, with no difference between CP species. Non-legume CPs decreased rapeseed yield at harvest by 0.58 t ha−1, whereas faba bean and faba bean + lentil increased yield by 0.16 and 0.12 t ha−1 respectively, when fertilized at the recommended rate. Intercropping with faba bean, lentil or a mixture of both made it possible to reduce nitrogen applications by 30–40 kg ha−1 with no significant decrease in rapeseed yield. Faba bean and faba bean + lentil mixtures had the best overall performance. This work suggests that intercropping rapeseed is promising, particularly in soils with low nitrogen content with an early sowing date in the late summer.  相似文献   

12.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

13.
The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The four-course crop rotation was spring barley undersown with grass/clover – grass/clover – winter wheat or wheat rye – pulse crop. All cuttings of the grass–clover were left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops.Application of 50 kg NH4–N ha?1 in manure increased average wheat grain yield by 0.4–0.9 Mg DM ha?1, whereas the use of catch crops did not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100–600 kg N ha?1 year?1) accumulated in the mulched grass–clover cuttings prior to ploughing and sowing of the winter wheat. This was reflected in grain yield and grain N uptake. Manure application to the cereals in the rotation reduced N accumulation in grass–clover at two of the locations, and this was estimated to have reduced grain yields by 0.1–0.2 Mg DM ha?1 depending on site. Model estimations showed that the average yield reduction from weeds varied from 0.1 to 0.2 Mg DM ha?1. The weed infestation was larger in the manure treatments, and this was estimated to have reduced the yield benefit of manure application by up to 0.1 Mg DM ha?1. Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7–1.1 Mg DM ha?1.The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4–N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated in grass–clover cuttings varied from 14% to 39% with the lowest value on the coarse sandy soil, most likely due to high rates of N leaching at this location. Both NUE and grain yield benefit in the winter cereals declined with increasing amounts of N accumulated in the grass–clover cuttings. The model-estimated benefit of increasing N input in grass–clover from 100 to 500 kg N ha?1 varied from 0.8 to 2.0 Mg DM ha?1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings and applying the material to the cereals in the rotation, possibly after digestion in a biogas reactor.Cereal grain protein content was increased more by the N in the grass–clover than from manure application, probably due to different timing of N availability. Green-manure crops or manures with a relatively wide C:N ratio may therefore be critical for ensuring sufficiently high protein contents in high yielding winter wheat for bread making.  相似文献   

14.
The use of winter cover crops enhances environmental benefits and, if properly managed, may supply economic and agronomic advantages. Nitrogen retained in the cover crop biomass left over the soil reduces soil N availability, which might enhance the N fertiliser use efficiency of the subsequent cash crop and the risk of depressive yield and pre-emptive competition. The main goal of this study was to determine the cover crop effect on crop yield, N use efficiency and fertiliser recovery in a 2-year study included in a long-term (10 years) maize/cover crop production system. Barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), as cover crops, were compared with a fallow treatment during the maize intercropping period. All treatments were cropped following the same procedure, including 130 kg N ha−1 with 15N fertiliser. The N rate was reduced from the recommended N rate based on previous results, to enhance the cover crop effect. Crop yield and N uptake, soil N mineral and 15N fertiliser recovered in plants and the soil were determined at different times. The cover crops behaved differently: the barley covered the ground faster, while the vetch attained a larger coverage and N content before being killed. Maize yield and biomass were not affected by the treatments. Maize N uptake was larger after vetch than after barley, while fallow treatment provided intermediate results. This result can be ascribed to N mineralization of vetch residues, which results in an increased N use efficiency of maize. All treatments showed low soil N availability after the maize harvest; however, barley also reduced the N in the upper layers before maize planting, increasing the risk of pre-emptive competition. In addition to the year-long effect of residue decomposition, there was a cumulative effect on the soil’s capacity to supply N after 7 years of cover cropping, larger for the vetch than for the barley.  相似文献   

15.
The arable fields in central Spain have been dominated by cereal production, especially winter wheat. In this area, the defined action of weed management program requires a clear understanding of the factors and mechanisms conditioning weed community dynamics in agro systems. This study evaluated the effects of different agricultural management systems on the abundance and diversity of weed communities in winter wheat crops.Weed density and composition of weed species were sampled over four years; comparing monoculture wheat and rotational wheat in three agricultural management systems: (1) direct drilling (no-tillage, NT); (2) chisel ploughing (minimum tillage 15 cm depth, MT) and (3) mouldboard ploughing (traditional tillage 20 cm depth, CT). With the aim to be able to improve weed management in agro systems with semiarid environments; within each of the agricultural management systems, we examined the impact of mineral fertilization (traditional and balanced) as a tool for reducing the external inputs in arable cereals.Weed diversity was assessed using the three common diversity indices: Shannon's index, evenness index and species richness. The data collected showed total weed density was different per tillage system and each year of the study, but we did not find significant differences between crop systems over the study.The abundance, diversity and evenness of the weed community in the arable field, were significantly increased in NT systems. Within the direct drilling (NT) plots, rotational wheat showed the highest levels of weed infestation and diversity. Comparing traditional and balanced mineral fertilization of soil did not reveal a significant effect on weed abundance and diversity observed in field.  相似文献   

16.
Cover crops are increasingly used for weed management. But selecting the most suitable species of cover crop to be associated with a main crop requires long-term trials. We present a model-based method that uses a reduced number of parameters to help select cover crops in the context of banana cover-cropping systems. We developed the SIMBA-CC model to focus on radiation interception. The model was calibrated for 11 cover crop species by measuring their growth in 4 m2 plots with three levels of shade (0, 50, and 75%). The SIMBA-CC model served to predict the long term growth potential of the 11 cover crop species in function of the radiation under the banana crop canopy. The model was validated using three species in association with banana plants. We defined three indicators based on outputs of the model to assess the ability of each of the 11 species (i) to compete with weeds and (ii) to be maintained in the long-term under the canopy of the main crop, and (iii) to evaluate competition with the main crop for nitrogen resource. This ex ante evaluation revealed the most promising species to be intercropped with banana. Finally, the SIMBA-CC model was used to define the light interception traits of a virtual cover crop that satisfy the three indicators in the case of intercropping with banana. We showed that to satisfy the three criteria, cover crops with low values of optimal photosynthetically active radiation (PARopti) should have moderate maximal biomass productivity, while crops with higher PARopti values should have a higher maximal productivity. The use of functional traits and modeling appears effective to disentangle the relations between intrinsic traits of cover crops and effect traits that affect the performances of the intercropping system.  相似文献   

17.
Cover crops in dry regions have been often limited by low nutrient and water-use efficiency. This study was conducted during 3.5 years to determine the effect of replacing bare fallow by a cover crop on yield, N uptake, and fate of labeled fertiliser in an intensive maize production system. Three treatments were studied: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and bare fallow during the intercropping period of maize (Zea mays L.). All treatments were irrigated and fertilised following the same procedure, and a microplot in each plot was established with 210 kg N ha?1 of double labeled ammonium nitrate. Crop yield and N uptake, soil mineral N (Nmin), and recovery of 15N in plant and soil were determined after maize harvest and killing the cover crop. Replacing bare fallow with cover crops did not affect subsequent maize yield but affected N uptake. Vetch increased N supply by legume residues after the second year, and the N content in grain by the third. Nitrogen recover from fertiliser was not affected by treatment and averaged 46%. Barley recovered more 15N during the autumn–winter period than vetch or fallow. Under representative conditions, average barley N content was 47, vetch 51, and spontaneous vegetation content 0.8 kg N ha?1. Recovery of 15N in barley comprised 19% of total N content in aerial biomass, while only 4% in vetch. Vetch enhaced soil 15N recovery more than other treatments, suggesting its presence in a fairly stable organic fraction unavailable for maize uptake or lost. Replacing bare fallow by a cover crop only reduced fertiliser losses in a year with abundant precipitation. Nevertheless, reduction in soil Nmin in vetch and bare fallow treatments was similar, showing that N losses can be reduced in this cropping system, either by replace bare fallow with barley or smaller N fertiliser applicationto maize.  相似文献   

18.
Strip tillage is a conservative technique widespread overseas with recognized environmental, agronomical and economic benefits. In Europe it has been proposed only recently and is almost unknown by farmers of Italy and other Mediterranean countries, where its compliance with soil and climate environments needs to be evaluated. For this reason, a two-year field trial comparison was carried out between strip tillage, minimum tillage and no tillage for the cultivation of maize in the Po valley, as representative crop and environment for the Italian and Southern Europe intensive agriculture. The aim was to evaluate effects on seedbed quality, weed infestation, and maize performance from crop establishment to final harvest.The experiment was conducted on a sandy-loam soil with high chemical fertility and good water availability for the crop. Strip tillage was carried out by an original passive tool implement hitched to a pneumatic drill operating at a forward speed of around 6 km h−1. We determined soil penetration resistance, bulk density, water content, clod size distribution, ground residue cover, number of weeds along crop rows and between rows, maize drilling depth, crop emergence, biomass accumulation and grain yield.Strip tillage moved less soil and left higher ground residue cover than minimum tillage, while the seedbed prepared by the two techniques did not differ for suitability to drilling, root exploration and crop growth. In fact, maize grown after strip tillage emerged fast and regularly approximating the wished plant density, experienced a limited weed infestation, and showed high total biomass and grain yields, similar to those obtained with minimum tillage.  相似文献   

19.
Because of the complexity of farming systems, the combined effects of farm management practices on nitrogen availability, nitrogen uptake by the crop and crop performance are not well understood. To evaluate the effects of the temporal and spatial variability of management practices, we used data from seventeen farms and projections to latent structures analysis (PLS) to examine the contribution of 11 farm characteristics and 18 field management practices on barley performance during the period 2009–2012. Farm types were mixed (crop-livestock) and arable and were categorized as old organic, young organic or conventional farms. The barley performance indicators included nitrogen concentrations in biomass (in grain and whole biomass) and dry matter at two growing stages. Fourteen out of 29 farm characteristics and field management practices analysed best explained the variation of the barley performance indicators, at the level of 56%, while model cross-validation revealed a goodness of prediction of 31%. Greater crop diversification on farm, e.g., a high proportion of rotational leys and pasture, which was mostly observed among old organic farms, positively affected grain nitrogen concentration. The highest average grain nitrogen concentration was found in old organic farms (2.3% vs. 1.7 and 1.4% for conventional and young organic farms, respectively). The total nitrogen translocated in grain was highest among conventional farms (80 kg ha−1 vs. 33 and 39 kg ha−1 for young and old organic farms, respectively). The use of mineral fertilizers and pesticides increased biomass leading to significant differences in average grain yield which became more than double for conventional farms (477 ± 24 g m−2) compared to organic farms (223 ± 37 and 196 ± 32 g m−2 for young and old organic farms, respectively). In addition to the importance of weed control, management of crop residues and the organic fertilizer application methods in the current and three previous years, were identified as important factors affecting the barley performance indicators that need closer investigation. With the PLS approach, we were able to highlight the management practices most relevant to barley performance in different farm types. The use of mineral fertilizers and pesticides on conventional farms was related to high cereal crop biomass. Organic management practices in old organic farms increased barley N concentration but there is a need for improved management practices to increase biomass production and grain yield. Weed control, inclusion of more leys in rotation and organic fertilizer application techniques are some of the examples of management practices to be improved for higher N concentrations and biomass yields on organic farms.  相似文献   

20.
We conducted a two-year field experiment to investigate the potential benefit of preceding crop residue incorporation into the soil as a strategy to enhance the density of bioavailable grain zinc (Zn) in a subsequent wheat (Triticum aestivum L.) crop. Sunflower (Heilianthus annuus L. cv. Allstar), sorghum (Sorghum bicolor L. cv. Speed Feed), clover (Trifolium pratense L.) and safflower (Carthamus tinctorius L. cv. Koseh-e-Isfahan) were grown as preceding crop (precrop) on a Zn-deficient calcareous soil in central Iran, followed by a culture of two wheat cultivars i.e., Kavir and Back Cross Rushan. The harvested aboveground plant matter was air-dried, crushed into pieces of 0.5–2 cm size, mixed, and after taking a sample for analysis, incorporated manually into the upper 15 cm of the soil of one half of the same plot from which it had been harvested, while the other half received no residues. The aboveground residues of precrops were incorporated into soil or removed. A treatment with no preceding crop (fallow) and no residue incorporation, but with the same management otherwise, was implemented as control treatment. For both wheat cultivars studied, higher grain yield was obtained after clover (between 14 and 25.6%) and sunflower (between 11.3 and 19.5%) than that after safflower, sorghum and the fallow. All precrop treatments significantly increased the accumulation of grain Zn and N and decreased the phytic-acid-to-Zn (PA:Zn) molar ratio (by 5–41% in Kavir and by 11–48% in Back Cross), most effectively the clover treatment. The treatment effects on grain Zn were closely correlated with soil pH and dissolved soil organic carbon (DOC). The results show that the cultivation of appropriate precrops, especially legumes, can be an effective strategy to biofortify wheat grains with Zn without compromising yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号