首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 31 毫秒
1.
Intercropping is widely used by smallholder farmers in developing countries, and attracting attention in the context of ecological intensification of agriculture in developed countries. There is little experience with intercropping of food crops in Western Europe. Yields in intercrops depend on planting patterns of the mixed species in interaction with local growing conditions. Here we present data of two years field experimentation on yield and yield components of a wheat–maize intercrop system in different planting configurations in the Netherlands. Treatments included sole crops of wheat (SW) and maize (SM), a replacement intercrop consisting of strips of six wheat rows alternating with two maize rows (6:2WM), as well as subtractive or additive designs, based on skip-row (6:0WM, 0:2WM) and add-row (8:2WM, 6:3WM) configurations. The land equivalent ratio (LER) of intercrops varied from 1.18 to 1.30 in 2013 and from 0.97 to 1.08 in 2014. Wheat grown in the border rows of wheat strips had higher ear number per meter row, greater kernel number per ear, and greater yield per meter row than wheat in inner rows and sole wheat, indicating reduced competition. Wheat in the border rows in the intercrops had, however, reduced thousand kernel weight and harvest index, indicating that competition in border rows intensified over time. Intercropping negatively affected maize biomass and thousand kernel weight, especially in add-row treatments. This study indicates that there is a potential yield benefit for the wheat–maize intercropping system under Western European growing conditions. However, the LER was affected by yearly variation in weather conditions and significantly greater than one in only one of the two years of the study.  相似文献   

2.
Different tillage systems (conventional, minimum, raised bed and no tillage) and four mulch levels (control, polythene, straw and soil) were compared in maize (Zea mays) and wheat (Triticum aestivum) production for three years on an experimental field (sandy loam) located at Dry Land Research Sub Station, Dhiansar, Jammu. Each treatment was replicated four times in split plot design. The aim of the research was to determine the influence of tillage and mulch practices on economics, energy requirement, soil physical properties and performance of maize and wheat. Tillage methods significantly affected the soil physical properties as change in soil moisture contents and infiltration rate of soil was recorded. The soil moisture contents in minimum tillage (MT) were maximum (12.4%, 16.6%) in surface soil as compared to conventional tillage (CT) in maize and wheat crops, respectively. Comparing to the CT infiltration rate was (1.16times, 1.21times and 1.11times) higher in minimum tillage (MT), no tillage (NT) and raised bed (RB), respectively in kharif season. Similar results were also found in rabi season. The greatest maize yield of 1865 kg ha?1 was achieved with CT system while not significantly lower yield was achieved with MT system (1837 kg ha?1). However, wheat yield was recorded higher in MT as compare to the CT system. Comparing to the energy requirement of different operations, MT required 34.3% less, NT 31.1% less and RB 46.0% less than the CT system. MT system saved 2.5 times energy in tillage operation compared to the CT system. The economic analysis also revealed that the maximum benefits could be obtained from MT (EUR 202.4 ha?1) followed by RB (EUR 164.2 ha?1) and NT (EUR 158.3 ha?1) and lowest in CT (EUR 149.5 ha?1). Benefit-cost ratio was highest in MT (0.71) and lowest in CT (0.44). Results revealed that mulch significantly affected the soil physical properties and growth of maize. The maximum soil moisture content, infiltration rate and grain yield of maize and wheat recorded higher in mulching practices over no mulch treatment. Polythene mulch and straw mulch were almost equally valuable in maize and wheat sequence. Tillage (minimum) and mulch (polythene and straw) have pronounced effect on soil physical properties (improved infiltration rate and conserve soil water), energy requirement, economics and growth of maize and wheat.  相似文献   

3.
Integrated crop–livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop–livestock systems with two types of winter cover cropping (legume-derived N and inorganic fertilizer N), two types of tillage [conventional disk (CT) and no tillage (NT)], and whether cover crops were grazed by cow/calf pairs or not. The 13-ha field study was a modification of a previous factorial experiment with four replications on Ultisols in Georgia, USA. Recurring summer drought severely limited corn and soybean production during all three years. Type of cover crop had little influence and grazing of cover crops had minor influence on crop production characteristics. Cattle gain from grazing of winter cover crops added a stable component to production. No-tillage management had large positive effects on corn grain (95 vs. 252 g m−2 under CT and NT, respectively) and stover (305 vs. 385 g m−2) production, as well as on soybean grain (147 vs. 219 g m−2) and stover (253 vs. 375 g m−2) production, but little overall effect on winter wheat grain (292 g m−2) and stover (401 g m−2) production. Our results suggest that robust, diversified crop–livestock systems can be developed for impoverished soils of the southeastern USA, especially when managed under no tillage to control environmental quality and improve resistance of crops to drought.  相似文献   

4.
Agroforesry is a common traditional practice in China, especially in the saline-alkaline regions, like the lower North China Plain (LNCP) characterized by lower yields of food crops. Adding trees to the agricultural land creates additional fruitsets or woody biomass besides food crops, enabling farmers to diversify the provision of farm commodities. However, the productivity of many agroforestry systems has been lower than expected in recent years, highlighting the need for a mechanistic understanding of below- or above-ground interactions. The study combined investigation and experimental data together to evaluate the effects of long-term intercropping agroforestry system [jujube tree (Zizyphus jujuba Mill. var. inermis (Bunge) Rehd.)/winter wheat–summer maize] on soil fertility balance, crop production and system economic efficiency over the past 22 years in LNCP, with a view to developing an effective fertilization management for the moderately alkaline soils. Except remain higher pH, the soils are basically free of sodic and soil salinity is not the major restriction factor for intercrops, even through there are some fluctuation with season and distance from jujube tree. The intercropping system significantly reduced soil nutrient contents, like soil organic C (SOC), total N (TN), available P (avail. P) and K (avail. K) in most parts of the ecotone of the system, but increased those nutrients in the belt of underneath the edge of tree canopy, The growth of intercrops at the belt of 3.5 m from tree was severely negative stressed by jujube tree in term of lower soil moisture, nitrate, avail. P and K although receiving more photosynthetically active radiation (PAR), whereas the winter wheat growing at the 2.5 m row had more water and nutrients supplied and thus produced more grain yield. Uneven fertilization to the ecotone (about 1–2.5 m of the intercrop field boundary) could partly offset the consumption and competition for nutrients between the tree and the intercrops, and improved the grain yields by 12.1% and 14.5% in the ecotone regions (distance from jujube trees) of 1.5 m for winter wheat and 2.5 m for summer maize by increasing respective yield components. Although the mean grain yield of intercropped winter wheat and summer maize was reduced by 35.6 and 35.2%, respectively, compared to sole cropping system, the intercropping system proved to be a profitable land use type based on net income and economic returns, in addition to the wood and ecological benefits of the jujube tree in the moderate desalinate- alkaline regions.  相似文献   

5.
The advantages and disadvantages of varying mixture proportion of crimson clover (Trifolium incarnatum L.) and Italian ryegrass (Lolium multiflorum Lam.), used as winter cover crops, and cover crop biomass management before maize sowing (Zea mays L.) were studied in a series of field experiments in Eastern Slovenia. Pure stands and mixtures of cover crops on the main plots were split into different cover crop biomass management subplots: whole cover crop biomass ploughed down before maize sowing, aboveground cover crop biomass removed before ploughing and sowing, or aboveground cover crop biomass removed before sowing directly into chemically killed residues.Cover crop and cover crop biomass management affected the N content of the whole aboveground and of grain maize yields, and the differences between actual and critical N concentrations in the whole aboveground maize yield. The whole aboveground and grain maize dry matter yields, and the apparent remaining N in the soil after maize harvesting, showed significant interaction responses to cover crop × management, indicating positive and negative effects. Crimson clover in pure stand provided high, and pure Italian ryegrass provided low maize dry matter yields and N content in the yields in all the observed methods of biomass management. However, within individual management, mixtures containing high proportions of crimson clover sustained maize yields and N contents similar to those produced by pure crimson clover. Considering the expected ecological advantages of the mixtures, the results thereby support their use.  相似文献   

6.
Winter wheat production in northern China severely suffered from high temperatures and low relative humidity. However, the spatio-temporal pattern of heat stress and dry stress and the impacts of these multi-hazards on winter wheat yield have rarely been investigated. Using historical climate data, phenology data and yield records from 1980 to 2008, an analysis was performed to characterize the spatio-temporal variability of heat stress and dry stress in the post-heading stages of wheat growth in northern China. Additionally, these stresses’ impacts on winter wheat yield fluctuations were evaluated. Spatially, the central and northern parts of northern China have seen more serious heat stress, while greater dry stress has been observed in the northwest and north of the research area. Temporally, the heat stress has increased in the western part but decreased in the central and eastern parts of research area. Dry stress has aggravated in the entire northern China during the past decades, indicating the complexity of the exposure to adverse climate conditions. These two hazards (heat stress and dry stress) have contributed significant yield loss (up to 1.28% yield yr−1) in most parts of the research region. The yield in the west was more sensitive to heat stress, and dry stress was the main hazard in the south. Additionally, the opposite spatial pattern between the sensitivity and exposure revealed that the climate is not the only factor controlling the yield fluctuation, the local adaptation measures used to mitigate negative influences of extreme events should not be ignored. In general, this study highlighted a focus on the impacts of multi-hazards on agricultural production, and an equal importance of considering local adaptation ability during the evaluation of agricultural risk in the future. Additionally, paying more attention to higher sensitive areas and to more reasonable and practical adaptive strategies is critical and significant for food supply security.  相似文献   

7.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

8.
This paper discusses the efficiency of embodied spillover from North America and Japan to China. We suppose that embodied spillovers are transmitted by international trade. The efficiency of a country or an area utilizes the embodied spillovers depends on two aspects,which are AC(Absorption Capacity)and SS(Structural Similarity). The empirical analysis show that China's utilizing efficiency of the embodied spillovers from Japan(0.322 8) is larger than from American(0.187 3).  相似文献   

9.
Resources for crop production are often scarce in smallholder farming systems in the tropics, particularly in sub-Saharan Africa (SSA). Decisions on the allocation of such resources are often made at farm rather than at field plot scale. To handle the uncertainty caused by both lack of data and imperfect knowledge inherent to these agricultural systems, we developed a dynamic summary model of the soil–crop system that captures essential interactions determining the short- and long-term crop productivity, while keeping a degree of simplicity that allows its parameterisation, use and dissemination in the tropics. Generic, summary functions describing crop productivity may suffice for addressing questions concerning trade-offs on resource allocation at farm scale. Such functions can be derived from empirical (historical) data or, when they involve potential or water-limited crop yields, can be generated using process-based, detailed crop simulation models. This paper describes the approach to simulating crop productivity implemented in the model FIELD (Field-scale Interactions, use Efficiencies and Long-Term soil fertility Development), based on the availability of light, water, nitrogen, phosphorus and potassium, and the interactions between these factors. We describe how these interactions are simulated and use examples from case studies in African farming systems to illustrate the use of detailed crop models to generate summary functions and the ability of FIELD to capture long-term trends in soil C and crop yields, crop responses to applied nutrients across heterogeneous smallholder farms and the implications of overlooking the effects of intra-seasonal rainfall variability in the model. An example is presented that evaluates the sensitivity of the model to resource allocation decisions when operating (linked to livestock and household models) at farm scale. Further, we discuss the assessment of model performance, going beyond the calculation of simple statistics to compare simulated and observed results to include broader criteria such as model applicability. In data-scarce environments such as SSA, uncertainty in parameter values constrains the performance of detailed process-based models, often forcing model users to ‘guess’ (or set to default values) parameters that are seldom measured in practice. The choice of model depends on its suitability and appropriateness to analyse the relevant scale for the question addressed. Simpler yet dynamic models of the various subsystems (crop, soil, livestock, manure) may prove more robust than detailed, process-based models when analysing farm scale questions on system design and resource allocation in SSA.  相似文献   

10.
Increasing water shortage and low water productivity in the irrigated drylands of Central Asia are compelling farmers to develop and adopt resource conservation technologies. Nitrogen (N) is the key nutrient for crop production in rice–wheat cropping systems in this region. Nitrogen dynamics of dry seeded rice-(aerobic, anaerobic) planted in rotation with wheat (well drained, aerobic) can differ greatly from those of conventional rice cultivation. Soil mineral N dynamics in flood irrigated rice has extensively been studied and understood, however, the impact of establishment method and residue levels on this dynamics remains unknown. Experiments on resource conservation technologies were conducted between 2008 and 2009 to assess the impact of two establishment methods (beds and flats) in combination with three (R0, R50 and R100) residue levels and two irrigation modes (alternate wet and dry (AWD) irrigation (all zero till), and a continuously flooded conventional tillage (dry tillage)) with water seeded rice (WSR) on the mineral N dynamics under dry seeded rice (DSR)-surface seeded wheat systems. N balance from the top 80 cm soil layers indicated that 32–70% (122–236 kg ha−1) mineral N was unaccounted (lost) during rice cropping. The amount of unaccounted mineral N was affected by the irrigation method. Residue retention increased (p < 0.001) the unaccounted mineral N content by 38%. With AWD irrigation, the N loss was not different among dry seeded rice in flat (DSRF), dry seeded rice in bed (DSRB), and conventional tillage WSR. Under different irrigation, establishment methods and residue levels, unaccounted mineral N was mainly affected by plant N uptake and soil mineral N content. Major amounts (43–58%) of unaccounted mineral N from DSR field occurred between seeding and panicle initiation (PI). During the entire rice and wheat growing seasons, NH4N consistently remained at very high levels, while, NO3N remained at very low levels in all treatments. In rice, the irrigation method affected NH4N content. Effect of residue retention and establishment methods were not significant on NH4N and NO3N dynamics in both crops and years. Further evidence of the continuously fluctuating water filled pore spaces (WFPS) of 64% and the microbial aerobic activity of 93% at the top 10 cm soil surface during rice growing season indicates soil in the DSR treatments was under frequent aerobic–anaerobic transformation, a conditions very conducive for higher amounts of N loss. In DSR treatments, the losses appeared to be caused by a combination of denitrification, leaching and N immobilization. When intending to use a DSR management strategies need to be developed for appropriate N management, irrigation scheduling, and residue use to increase mineral N availability and uptake before this practices can be recommended.  相似文献   

11.
Journal of Crop Science and Biotechnology - This study evaluated the growth characteristics, forage yield, and feed value of a maize–soybean intercropping system under different fertilizer...  相似文献   

12.
In field trials on the Loess Plateau, China, in 2012–13, maize (Zea mays L.) and soybean (Glycine max L.) were sole cropped and intercropped at three densities and with three sowing proportions. Maize was generally more growth efficient for biomass accumulation than soybean during the entire growth interval, as assessed using the relative efficiency index (REIc). However, most of sowing proportion at each density displayed a trend of decreased growth with development. Throughout the growth period, the dry matter production and leaf area index (LAI) of maize increased as the plant density increased irrespective of whether it was grown as a sole crop or as an intercrop. However, the effect of increasing cropping density was less obvious for soybean. The LAI values of the sole crop treatment for both maize and soybean were greater than that of the intercropping system, indicating that the presence of maize and soybean together suppressed the respective growth of the two crops. At the final harvest, land equivalent ratios (LER) of 0.84–1.35 indicated resource complementarity in most of the studied intercrops. Complementarity was directly affected by changes in plant densities; the greatest LER were observed in 2 rows maize and 2 rows soybean intercrops at low density. The water equivalent ratio (WER), which characterized the efficiency of water resource use in intercropping, ranged from 0.84 to 1.68, indicating variability in the effect of intercropping on water-use efficiency (WUE).  相似文献   

13.
Since wheat and other annual cereal crops are often harvested for forage instead of grain in California, replacing them with perennial crops could save energy and reduce the release of heat-trapping gases. To assess the potential for perennial crops based on wheat, biomass yield and stand persistence were studied for nine wheat×wheatgrass amphiploids (8x to 14x) and five wheatgrass species (2x to 10x) over three seasons in the Central Valley, California. The 8x and 10x amphiploids died after one biomass harvest and a single summer period. In contrast, the 14x amphiploids, which were sterile, continued producing biomass over the entire period of the trial. They were also highly salt-stress tolerant with little decline in biomass production in response to an increase in salinity from 100 and 250 mM NaCl in a solution-culture study. The development of a salt-stress-tolerant perennial crop based on wheat for the California-type climate will require either a substantial improvement in perennial growth of low-ploidy (8x) amphiploids or the development of technology for efficient vegetative propagation of the sterile high-ploidy (14x) amphiploids.  相似文献   

14.
In integrated soybean–beef cattle systems, the pasture grazing intensity affects the grain crop performance in succession. In addition, the dung cattle input influences the soil nutrients distribution in the field affecting the grain crop yield. This experiment aims to evaluate the effects of winter pasture heights and cattle dung input in soybean crop performance in succession. Main soil macronutrient content, soybean plant population, dry shoot biomass, plant height, plant nutrient content, soybean yield and yield components were assessed in the 10th experimental year. The experiment was conducted in the state of Rio Grande do Sul, Southern Brazil, in a long-term integrated crop–livestock systems implemented in 2001. Treatments were arranged in a split plot design with four pasture heights (0.10, 0.20, 0.30, and 0.40 m) and two levels of dung input (with or without). For all the variables analyzed, there was no interaction between pasture heights and cattle dung input (P > 0.05). The pasture height management had only effect in soil P content, soybean dry biomass production, plant height and number of grains per pod. The increase in grazing intensity was associated to the rise in soybean plant height and dry mass production but was without effect on grain yield. The presence of grazing animals in the integrated soybean–beef cattle systems, and the resultant augmentation of dung input increased by 122% and 38% the availability of soil K and P, respectively in relation to the absence. Thus, the content of such nutrients in the plant were increased in 41% and 7%, respectively. The improvement in soybean nutrition increases the amount of pods per plant by 20%, and resulting in a 23% increase in soybean yield. These results indicate that cattle dung input resulting from grazing animals in the pasture phase increased soybean grain yield due to better plant nutrition. Although, the occurrence of cattle dung was very concentrated in some spots of the field and thus future studies should address strategies to improve spatial distribution of cattle dung input.  相似文献   

15.
Elevated CO2 stimulates crop yields but leads to lower tissue and grain nitrogen concentrations [N], raising concerns about grain quality in cereals. To test whether N fertiliser application above optimum growth requirements can alleviate the decline in tissue [N], wheat was grown in a Free Air CO2 Enrichment facility in a low‐rainfall cropping system on high soil N. Crops were grown with and without addition of 50–60 kg N/ha in 12 growing environments created by supplemental irrigation and two sowing dates over 3 years. Elevated CO2 increased yield and biomass (on average by 25%) and decreased biomass [N] (3%–9%) and grain [N] (5%). Nitrogen uptake was greater (20%) in crops grown under elevated CO2. Additional N supply had no effect on yield and biomass, confirming high soil N. Small increases in [N] with N addition were insufficient to offset declines in grain [N] under elevated CO2. Instead, N application increased the [N] in straw and decreased N harvest index. The results suggest that conventional addition of N does not mitigate grain [N] depression under elevated CO2, and lend support to hypotheses that link decreases in crop [N] with biochemical limitations rather than N supply.  相似文献   

16.
Aluminium (Al) toxicity limits common bean productivity in acid soil regions of the tropics. To improve Al resistance of common bean, Al-sensitive Phaseolus vulgaris (SER16) was crossed to Al-resistant P. coccineus (G35346-3Q) to create 94 F5:6 recombinant inbred lines (RILs) of the pedigree SER16 × (SER16 × G35346-3Q). RILs were characterized for resistance to Al in a hydroponic system with 0 and 20 μM Al in solution, and for shoot and root growth response to Al-toxic infertile acid soil in 75 cm long soil cylinder system using an oxisol of low Al- (12.5%; pH 4.6; fertilized) and high Al-saturation (77%; pH 4.1; unfertilized). G35346-3Q increased its taproot elongation rate by 3.5% between 24 and 48 h under 20 μM Al in solution, while the best RIL, Andean genotype ICA Quimbaya, and sensitive genotype VAX1 expressed reductions of 2.6, 12.5, and 69.5%, respectively. In the acid soil treatment the correlation between leaf area and total root length was highly significant under high Al saturation (r = 0.70***). Genotypes that were Al resistant in the hydroponic system were not necessarily tolerant to Al-toxic acid soil conditions based on shoot and root growth responses. Phenotypic evaluation using both systems allows the identification of genotypes with Al resistance combined with acid soil adaptation. Two genotypes (ALB88 and ALB91) emerged as lines with multiple traits. Results suggest that inheritance of Al resistance and acid soil tolerance in G35346-3Q is complex. Results from this work will be useful for identification of molecular markers for Al resistance in Phaseolus species and to improve acid soil adaptation in common bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号