首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. Vineyards in Champagne, France are generally situated on slopes where the soils are subject to erosion. Therefore it is important to find a soil‐surface management practice that protects the soil against water erosion. We assessed the potential of mulches or grass covers to stabilize soil aggregates in a calcareous sandy loam from a vineyard in Champagne after 9 years under different management systems. Four different treatments were studied: (i) a bluegrass (Poa pratensis) surface cover between the vine rows (GC) with bare soil under the vines (R); two organic mulches of (ii) coniferous (CB) or (iii) poplar (PB) bark that covered the entire soil surface, and (iv) bare soil between the rows as a control. The bark amendments were applied every 3 years at rates of 61 and 67 t ha?1 for the PB and CB treatments, respectively. The kinetics of soil disaggregation in water fitted a power law (A=K t?D), in which K was the fraction of water‐stable >200 μm aggregates remaining after 1 hour of wet‐sieving. In the 0–5 cm layer, aggregate stability was greater for GC (K=21.7), CB (K=15.2) and PB (K=13.6) than for the control (K=10.5) and R (K=11.8). In the 0–20 cm layer, CB also stabilized soil aggregates (K=14.0–15.0); but PB did not. Structural stability was more strongly related to total organic carbon (R2=0.64, P <0.001) than to microbial biomass carbon (R2=0.54, P<0.001). A bluegrass cover enhanced structural stability in the 0–5 cm and 0–20 cm layers (K=14.2), probably because of intense root development and rhizodeposition enhancing microbially produced metabolites, such as carbohydrates. Establishing grass cover or applying bark mulch are effective agricultural practices that improve soil aggregate stability and thus should reduce soil erosion. The vegetative growth of the vines was greater on the soils amended with bark mulches and less on the grass covered soils compared with the control soil; however, no difference in wine quality was observed among the different treatments.  相似文献   

2.
In a productive vineyard, the influence of different soil management practices on carbon sequestration and its dynamic in water-stable aggregates of Rendzin Leptosol was studied. In 2006, an experiment of different management practices in a productive vineyard was established in the locality of Nitra-Dra?ovce, in the Nitra winegrowing area of Slovakia. The following treatments were established: (1) control (grass without fertilization); (2) T (tillage); (3) T + FM (tillage + farmyard manure); (4) G + NPK3 (grass + NPK 120–55–195 kg ha?1); and (5) G + NPK1 (grass + NPK 80–35–135 kg ha?1). The results showed that the lowest soil organic matter content (9.70 g kg?1) in water-stable microaggregates was determined in G + NPK3, as well as in T. However, the highest soil organic matter content in the highest size fractions of water-stable macroaggregates (>5 mm) was observed in T + FM (19.7 g kg?1). The highest value for carbon sequestration capacity in water-stable microaggregates was observed in the ploughed farmyard manure treatment. However, the control treatment showed the highest values for carbon sequestration capacity in water-stable macroaggregates, including agronomically favourable size fractions (0.5–3 mm). In all soil management practices under a productive vineyard the most intensive changes in the soil organic matter content were observed in the highest size fractions (>3 mm) of water-stable macroaggregates.  相似文献   

3.
A comparative study of organic, low input, conventional vegetable greenhouse systems was conducted to assess the effect of management practices on the soil nematode community. Bacterivores were the most dominant trophic group in all three systems with a mean proportion of over 80%, followed by omnivore-carnivores. In general, organic management practices increased the abundance of total nematodes, bacterivores, fungivores, and omnivore-carnivores in comparison with low input and conventional management practices. Though inhibitory effects of plant feeders were found in organic and low input systems, these effects were more evident in organic systems. However, small differences were observed in the composition of trophic groups and fauna analysis. All three systems displayed enriched soil conditions and structured food webs. We inferred that the bottom-up effect resulting from organic input in the soil food web may play a more important role than the disruption effects under our high input greenhouse conditions. The Shannon index (H′) and genus dominance (λ) suggested that in greenhouse conditions, excessive manure input would cause a decrease in nematode diversity but increase the dominance, particularly for enrichment opportunists. We concluded that management practices under greenhouse conditions were more influential on nematode biomass (including trophic groups) than community structure.  相似文献   

4.
ABSTRACT

Mineralization is the main organic matter conversion process, which leads not only to preservation of organic matter in the soil but also to its sequestration. Soil organic matter has equal value as mineral part if we want to improve soil quality or increase the yield. Because of intensive farming, irresponsible use of mineral fertilizers and natural factors, soil organic matter is decreasing. To counteract this process, different soil-friendly management practices and techniques, such as shallow tillage, no-tillage or direct drilling and application of additional organic matter are used. The objective of the present study was to assess the changes in the intensity of soil organic matter mineralization as influenced by primary soil tillage of different intensity in combination with organic matter incorporation. Long-term studies showed that land management practices differentiated the soil into two layers: upper (0–10?cm) layer containing more moisture and nutrients and lower (10–20?cm) layer comprising less moisture and nutrients. The conditions of aeration in the arable soil layer did not change under the effect of ploughing. In this soil, the rate of mineralization was lower than that in the ploughless tillage treatment. The most active mineralization of soil organic matter in the ploughless tillage treatment occurred in the autumn period, when high level of rainfall promoted the loss of nutrients from the topsoil layer.  相似文献   

5.
The effect of soil organic matter (SOM) on sorptive parameters under different soil management practices in Rendzic Leptosol was studied. In 2006, an experiment of different management practices in a productive vineyard was established in the locality of Nitra-Dra?ovce (Slovakia). The following treatments were established: (1) control (grass without fertilization), (2) T (tillage), (3) T + FYM (tillage + farmyard manure), (4) G + NPK3 (grass + 3rd intensity of fertilization for vineyards), (5) G + NPK1 (grass + 1st intensity of fertilization for vineyards). Soil samples were collected every month during the year 2010. Obtained results showed increased hydrolytic acidity (by 23%), sum of basic cations (by 37%) and decreased total cation exchange capacity (CEC) (by 36%) with higher doses of fertilization in comparison to control. Application of farmyard manure had a positive effect on the increase in the SOM cation sorption capacity. Positive correlations between pH and sum of basic cations (SBC) (r = 0.493, ≤ 0.001), CEC (r = 0.498, ≤ 0.001) and cation sorption capacity of SOM (r = 0.391, ≤ 0.01) were observed. Higher values of labile carbon:potentially mineralizable nitrogen (CL:Npot) ratio corresponded with lesser CEC, SBC and base saturation values in the soil. With increased humus quality (higher values of humic acid:fulvic acid (CHA:CFA) ratio), cation sorption capacity of SOM significantly increased (r = 0.329, p ≤ 0.01). The results of this study proved that the application of farmyard manure had a positive effect on the increase of SOM sorption capacity, but higher doses of mineral fertilizers added to soil had a negative effect.  相似文献   

6.
It has been well documented that organic amendment affects soil nematode community structure. However, little is known about the effect of organic amendment amount on soil nematodes. To assess the effect of the amount of organic amendments on soil nematode community structure and metabolic activity, the community composition, abundance, and metabolic footprints of soil nematodes were determined in a long-term field experiment with various amounts of organic amendment in Northeast China. Fertilization treatments included an unfertilized control (CK), chemical fertilizer without manure amendment (OM0), manure applied at 7.5 Mg ha-1 plus chemical fertilizer (OM1), and manure applied at 22.5 Mg ha-1 plus chemical fertilizer (OM2). A total of 46 nematode genera were found. Treatments with the largest amount of organic amendment had the smallest number of plant parasite genera (5), but a largest number of dominant genera (7). Soil nematodes, bacterivores, and fungivores were the most abundant in OM2, followed by OM1, and the lowest in OM0 and CK. Organic amendment increased the enrichment index (EI), and the large amount of organic amendment increased the metabolic footprints of bacterivore (Baf) and fungivore (Fuf) and enrichment footprint (Ef). The relationships between Baf (or Fuf) and the increases in soil organic carbon (ΔSOC) and total nitrogen (ΔTN) were stronger than those of bacterivore (or fungivore) abundance with ΔSOC and ΔTN, except for the relationship between bacterivore abundance and ΔSOC. The EI and Ef were positively correlated with ΔSOC and ΔTN. These findings suggest that the amount of organic amendment affects soil nematode activity and function at entry levels in soil food web, and that metabolic footprints of soil nematodes may be better indicators than their abundances in assessing their relationships with soil nutrients.  相似文献   

7.
不同土壤管理措施下塿土团聚体的大小分布及其稳定性   总被引:8,自引:4,他引:8  
土壤团聚体是土壤的重要组成部分,其大小分布影响土壤的功能。本文利用22年土长期定位试验,研究不同土壤管理措施和不同施肥对土壤机械稳定性和水稳性团聚体的分布及其稳定性的影响。土壤管理措施包括裸地休闲、 撂荒和小麦/玉米轮作体系,其中小麦/玉米轮作体系中有9种施肥处理,分别为不施肥(CK),化肥氮(N)、 磷(P)和钾(K)不同配施5个处理(N、 NP、 NK、 PK、 NPK),秸秆还田与化肥配合(SNPK),有机肥与化肥配施2个处理(M1NPK、 M2NPK)。结果表明,不同管理措施显著影响表层(010 cm)和亚表层(1020 cm)土壤的机械稳定性和水稳性团聚体的分布。与作物体系比较,长期休闲可显著增加机械稳定性微团聚体(0.25 mm)的含量,对水稳性团聚体的含量和分布没有显著影响。而长期撂荒显著增加了大于2 mm 的团聚体含量及团聚体的稳定性。长期不同施肥显著影响 030 cm 土层的机械稳定性和水稳性团聚体的分布,总趋势为施肥比不施肥处理降低了1 mm的团聚体含量,增加了0.25~1 mm的团聚体含量,但对土壤团聚体的稳定性没有显著影响。因此,土撂荒22年后显著增加了土壤团聚体的稳定性,而种植作物和不同施肥处理对土壤团聚体的稳定性影响甚微。  相似文献   

8.
9.
Different land‐use affects the organization of mineral soil particles and soil organic components into aggregates and the consequent arrangement of the aggregates will influence essential ecosystem functions. We investigated a continuous rubber plantation (forested), land fallowed for 10 y (fallow), 10‐y continuous arable cropping land and cropped land with top soil removed (TSR) for concentrations of C, N, and P in bulk soil and dry aggregates. Results showed that a high level of soil disturbance decreased the proportion of surface (0–15 cm) soil aggregate stability (low mean weight diameter) in TSR by 149% and arable cropping by 125% compared with the forested. Aggregate associated SOC was higher in aggregate‐size fractions of forested land‐use when compared with that in 10‐y fallow, continuous arable cropping, and TSR. For aggregate associated N, fallow and forested land‐use types concentrated higher proportion across aggregate sizes than the arable cropping and TSR. Macro aggregate fractions generally contained higher concentrations of C, N, and P compared with the micro‐aggregates. Water transmission indicators like total porosity and saturated hydraulic conductivity recorded higher values with forested and fallow land‐use than the others. We can thus conclude that long‐term soil disturbance due to cultivation and removal of top soil reduces the accumulation of soil C, N, and P in bulk soil and decreases water transmission properties. On the other hand, aggregate‐associated C, N and P accumulations are dependent on the level of soil surface disturbance and aggregate sizes.  相似文献   

10.
11.
为解决东北黑土区因不合理耕作导致的土壤结构性状变差及有机碳含量下降的问题,该研究于2015年开始,在黑龙江省哈尔滨市东北农业大学向阳试验基地开展。设置免耕+秸秆还田(NTS)、免耕(NT)、翻耕+秸秆还田(CTS)、翻耕(CT)4种处理,于2018、2019年采集土样,研究免耕措施及秸秆还田对东北薄层黑土区0~10、>10~20 cm土壤团聚体稳定性、土壤有机碳含量、各粒径团聚体内有机碳含量的影响。结果表明:2018和2019年0~10、>10~20 cm土层NTS处理>5 mm水稳性团聚体百分比含量及平均重量直径显著高于其他3种处理,NTS及NT处理土壤有机碳含量显著高于CTS及CT处理(P?<0.05),4种处理各粒径水稳性团聚体有机碳含量峰值总体出现在1~2 mm处,NTS及NT处理>5、2~5、1~2 mm有机碳贡献率整体高于CTS及CT处理。研究表明,免耕与秸秆还田有利于薄层黑土坡耕地耕层土壤团聚体稳定性的提高和各粒级下团聚体有机碳的积累,与其他3种处理相比,免耕+秸秆还田效果更佳。  相似文献   

12.
A field experiment was carried out from 2003 to 2013 in the Wanzhong Farm of the Hainan Island, China, to determine the effects of two long-term banana rotations on the abundance and trophic groups of soil nematode communities in the island. The experiment was set out as a randomized complete block design with three replications of three treatments: banana-pineapple rotation(AB), banana-papaya rotation(BB) and banana monoculture(CK) in a conventional tillage system. Soil samples were taken at depths of 0–10, 10–20 and 20–30 cm, and nematodes were extracted by a modified cotton-wool filter method and identified to the genus level. Nematode ecological indices of Shannon-Weaver diversity(H′), dominance index(λ), maturity index(MI), plant parasite index(PPI), structure index(SI), enrichment index(EI), and channel index(CI) were calculated. A total of 28 nematode genera with relative abundance over 0.1% were identified, among which Tylenchus and Paratylenchus in the AB, Thonus in the BB, Tylenchus and Helicotylenchus in the CK were the dominant genera. The rotation soils favored bacterivores, fungivores and omnivores-predators with high colonizer-persister(c-p) values. Soil food web in the rotation systems was highly structured, mature and enriched as indicated by SI, MI and EI values, respectively. Higher abundance of bacterivores and lower values of CI suggested that the soil food web was dominated by a bacterial decomposition pathway in rotation soils. Nematode diversity was much higher after a decade of rotation.Soil depth had significant effects on the abundance of soil nematodes, but only on two nematode ecological indices(λ and MI).  相似文献   

13.
[目的]探究生物炭配施化肥对不同粒级团聚体中微生物量碳、氮(MBC、MBN)含量和胞外酶活性的影响,分析影响团聚体胞外酶活性变化的主控因素,为提升土壤质量提供科学依据.[方法]田间微区试验在河南现代农业研究基地进行,供试土壤为石灰性潮土.设置4个处理:不施肥(CK)、单施化肥(NPK)、单施生物炭(BC)和生物炭配施化...  相似文献   

14.
不同农业管理措施对土壤线虫的影响   总被引:2,自引:0,他引:2  
研究了不同农业管理措施对土壤线虫的影响,结果表明:日光温室中土壤线虫的优势种群为食细菌的小杆线虫(Rhabditis),常规农田中优势种群为食细菌的小杆线虫和植食性的螺旋线虫(Helicotylenchus),休闲地中优势种群为植食性线虫,包括螺旋线虫、盘旋线虫(Rotylenchus)和丝尾垫刃线虫(Filenchus);线虫的多样性、丰富度、ΣMI、EI、SI指数表明日光温室所受到土壤线虫的扰动最强,常规农田次之,休闲地所受干扰最小;PPI/MI、WI、BI、CI指数表明日光温室土壤营养丰富,常规农田和休闲地营养贫瘠.  相似文献   

15.
In rainfed semi‐arid agroecosystems, soil organic carbon (SOC) may increase with the adoption of alternative tillage systems (e.g. no‐tillage, NT). This study evaluated the effect of two tillage systems (conventional tillage, CT vs. NT) on total SOC content, SOC concentration, water stable aggregate‐size distribution and aggregate carbon concentration from 0 to 40 cm soil depth. Three tillage experiments were chosen, all located in northeast Spain and using contrasting tillage types but with different lengths of time since their establishment (20, 17, and 1‐yr). In the two fields with mouldboard ploughing as CT, NT sequestered more SOC in the 0–5 cm layer compared with CT. However, despite there being no significant differences, SOC tended to accumulate under CT compared with NT in the 20–30 and 30–40 cm depths in the AG‐17 field with 25–50% higher SOC content in CT compared with NT. Greater amounts of large and small macroaggregates under NT compared with CT were measured at 0–5 cm depth in AG‐17 and at 5–10 cm in both AG‐1 and AG‐17. Differences in macroaggregate C concentration between tillage treatments were only found in the AG‐17 field at the soil surface with 19.5 and 11.6 g C/kg macroaggregates in NT and CT, respectively. After 17 yr of experiment, CT with mouldboard ploughing resulted in a greater total SOC concentration and macroaggregate C concentration below 20 cm depth, but similar macroaggregate content compared with NT. This study emphasizes the need for adopting whole‐soil profile approaches when studying the suitability of NT versus CT for SOC sequestration and CO2 offsetting.  相似文献   

16.
【目的】探明不同保护性耕作措施对黄土高原旱作土壤不同粒级复合体中有机氮含量与分配的影响,可对评价耕作措施的效果提供科学依据。【方法】基于黄土高原旱区14年的长期定位试验,采用Bremner法, 对传统耕作(T)、免耕(NT)、秸秆覆盖(TS)及免耕+秸秆覆盖(NTS)四种耕作措施条件下不同土壤粒级复合体中的有机氮含量和分配进行了研究。【结果】保护性耕作方式均增加了2~10 μm粒级土壤复合体的比例,增幅为20.0%~31.7%;降低了0~2 μm粒级土壤复合体在土壤中所占的比例,降幅为27.6%~31.0%。在所有耕作措施下,耕层土壤中不同粒级复合体所占的比例为10~50 μm>2~10 μm>0~2 μm>50~100 μm>100 μm。保护性耕作方式均明显提高了耕层0~2 μm粒级土壤复合体中氨基糖氮的含量,增幅在46.9%~107.1%,降低了单位质量0~2 μm粒级土壤复合体中的NH+4-N含量,降幅在14.8%~27.0%;明显提高了耕层单位质量2~10 μm粒级土壤复合体中酸解总氮、氨基酸氮和氨基糖氮的含量,增幅分别为8.2%~14.3%、16.2%~31.5%和154.9%~184.3%;降低了单位质量2~10 μm粒级土壤复合体中NH+ 4-N的含量,降幅为28.7%~46.6%。传统耕作(T)条件下,与各粒级土壤复合体相结合的有机氮量顺序为10~50 μm>0~2 μm>2~10 μm>50~100 μm>100 μm以上,而保护性耕作条件下,与各粒级土壤复合体相结合的有机氮量顺序为10~50 μm>2~10 μm>0~2 μm>50~100 μm>100 μm以上;与传统耕作相比,保护性耕作措施显著地增加了耕层土壤中酸解总氮、氨基酸氮、氨基糖氮的含量,增幅分别为6.6%~20.4%、89.0%~113.0%和11.9%~31.6%,降低了NH+4-N的含量。【结论】与传统耕作(T)处理相比,保护性耕作(NT、TS、NTS)措施明显提高了土壤2~10 μm粒级复合体的比例,降低了0~2 μm粒级复合体的比例;增加了耕层土壤中酸解氮总氮、氨基糖态氮和氨基酸态氮的含量,降低了NH+ 4-N的含量。土壤中以氨基酸态氮占优势地位,其它形态的有机氮无明显分布规律。  相似文献   

17.
A. J. NATH  R. LAL 《土壤圈》2017,27(1):172-176
Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes.However,soil physical disturbances have aggravated the soil degradation process by accelerating erosion.Thus,reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands.Four sites of different land use types/tillage practices,i) no-till (NT) corn (Zea mays L.) (NTC),ii) conventional till (CT) corn (CTC),iii) pastureland (PL),and iv) native forest (NF),were selected at the North Appalachian Experimental Watershed Station,Ohio,USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation,mean weight diameter (MWD) and geometric mean diameter (GMD),and soil organic carbon and total nitrogen contents.The NTC plots received cow manure additions (about 15 t ha-1) every other year.The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-1).The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC.In the 0-10 cm soil layer,the > 4.75-mm size fraction dominated NTC and was 46% more than that for CTC,whereas the < 0.25-mm size fraction was 380% more for CTC than for NTC.The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm,respectively) were higher than those for CTC (1.47 and 0.72 mm,respectively) in the 0-10 cm soil layer.Macroaggregates contained 6%42% and 13% 43% higher organic carbon and total nitrogen contents,respectively,than microaggregates in soil for all sites.Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC.Therefore,a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC.In contrast,soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates.The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF > PL > NTC > CTC,being 35%-46% more for NTC over CTC.The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.  相似文献   

18.
长期定位试验研究松嫩平原典型中厚黑土区水稳性团聚体组成和微粒有机质积累分布规律结果表明,不同培肥模式和耕作制度对水稳性团聚体组成有很大影响,耕地团聚体组成以<1mm水稳性团聚体占绝对优势;微粒有机碳(POM C)主要存在于水稳性大团聚体中,且其含量随粒级减小而下降,这对维持耕地黑土大团聚体(>0 .2 5mm)水稳定性起重要作用  相似文献   

19.
Continuous conventional tillage can cause serious soil degradation in rain‐fed agriculture, which reduces crop productivity. Adopting suitable tillage practices is very important for improving the soil and increasing crop productivity. Between 2007 and 2010, a 3‐year field study was conducted in semi‐arid areas of southern Ningxia, China, to determine the effects of rotational tillage practices on bulk density, soil aggregate, organic carbon concentration and crop yields. Three tillage treatments were tested: no‐tillage the first and third year and subsoiling the second year (NT/ST/NT); subsoiling the first and third year and no‐tillage the second year (ST/NT/ST); and conventional tillage each year (CT). A conventional tillage treatment was used as the control. Under the rotational tillage treatments, the mean soil bulk density at a depth of 0–60 cm was significantly (P < 0.05) decreased by 4.9% compared with CT, and with the best effect under ST/NT/ST. The soil organic carbon (SOC) concentration and aggregate size fractions and stability at 0–40 cm depth were significantly (P < 0.05) increased in rotational tillage treatments when compared with the conventional tillage, and the ST/NT/ST treatment produced the highest increases. Significant differences were detected in the SOC concentration in 2 to 0.25–mm size fractions at 0–30 cm depth between rotational tillage treatments and conventional tillage. Biomass and grain yield with the rotational tillage practices were significantly positively influenced over 3 years, and ST/NT/ST produced the highest average crop yields among the three treatments. Therefore, it was concluded that the application of rotational tillage with subsoiling every 2 years and no‐tillage every other year (ST/NT/ST) should be of benefit in promoting the development of dryland farming in semi‐arid areas of northwest China.  相似文献   

20.
ABSTRACT

Field experiment was conducted to evaluate the effect of corn straw derived-biochar (700 °C) applied at 0 (control), 10 (B1), 20 (B2) and 30 t ha?1 (B3) on water stable aggregate (WSA), mean weight diameter (MWD), total organic carbon (TOC) and total nitrogen (TN) in WSA fractions of Albic soil. Compared with control, WSA in > 2 mm fraction increased, by 40.8% and 51.5% (0–10 cm depth) in B1 and B3, respectively. B1, B2 and B3 (10–20 cm depth) increased by 55.2%, 69.6% and 62.4%, respectively. MWD increased by 34.4%, 21.6%, and 17.6% with B3 at 0–10 cm, 10–20 cm and 20–30 cm depths, respectively. TOC in the > 2 mm fraction increased by 28.6%, 22.1%, and 23.2% (0–10 cm depth) in B1, B2, and B3, respectively, TN in 2–0.5 mm fractions increased by 32.4%, 23.4% and 33.6% (0–10 cm depth); and in the 0.25–0.05 mm fractions increased by 14.8%, 19.8% and 18.7% (10–20 cm depth), in B1, B2 and B3, respectively. Our findings suggest biochar application at 30 t ha?1 could improve structural stability and sequestration of TOC and TN in Albic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号