首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Reduced tillage and mulching may bring about new production systems that combine better soil structure with greater water use efficiency for vegetable crops grown in raised bed systems. These are especially relevant under conditions of high rainfall variability, limited access to irrigation and high soil erosion risk. Here we evaluate a novel combination of empirical models on water interception and infiltration, with a soil-water balance model to evaluate water dynamics in raised bed systems on fine Uruguayan soils to analyze the effect of reduced tillage, cover crops and organic matter addition on soil physical properties and water balance. In the experiment mulching increased water capture by 9.5% and reduced runoff by 37%, on average, leading to less erosion risk and greater plant available water over four years of trial. Using these data we calibrated and evaluated different models that predicted interception + infiltration efficiently (EF = 0.93 to 0.95), with a root mean squared error (RMSE) from 0.32 to 0.40 mm, for an average observed interception + infiltration of 28.8 mm per day per rainfall event. Combining the best model with a soil water balance resulted in predictions of total soil water content to 1 m depth (SWCT) with RMSE ranging from 4.5 to 10.3 mm for observed SWCT ranging from 180.4 to 380.6 mm. Running the model for a four-year crop sequence under 10 years of Uruguayan historical weather revealed that reduced tillage required on average 141 mm yr−1 less irrigation water than conventional tillage combined with organic matter application, thus enabling a potential increase in irrigated area of vegetable crops and crop yields. Results also showed the importance of inter-annual rainfall variability, which caused up to 3-fold differences in irrigation requirements. The model is easily adaptable to other soil and weather conditions.  相似文献   

2.
In southern Europe (Italy), a two-site field experiment with contrasting soil conditions (high clay—SOC-protecting soil near Napoli versus low clay—non-SOC-protecting soil near Torino) was conducted to evaluate the short-term potential of a carbon (C) friendly management to sustain and possibly increase both crop yields and soil organic C (SOC). Compost distribution (COM1, COM2) and minimum tillage (MT) were compared to conventional management (CONV) in a maize-based cropping system. COM1, MT, and CONV each received 130 kg N ha−1 in compost or urea form. A double dose was applied to COM2 while the plowed control plots (0 N) were not fertilized. Fertilizers were applied for three years (from 2006 to 2008); residual soil fertility was assessed during the fourth year (2009).Results suggested that only the SOC protection strategy via MT could be agronomically sustainable in the high clay content soil near Napoli. There, a short-term SOC increase was recorded with either compost or MT application. In fact, in the same soil, compost use depressed both yield and N availability for maize, which we attribute to the reduction of SOM mineralization due to hydrophobic protection by added humified organic matter coupled with soil physical protection. Compost addition increased SOC (55.1% of added C) in the soil near Torino, where high native N availability buffered its low mineralization and allowed high yields. Alternatively, MT showed no effect on short-term C dynamics, probably because the low organic matter protection favored oxidation and mineralization of root-derived C.  相似文献   

3.
Sequestration of C in arable soils has been considered as a potential mechanism to mitigate the elevated levels of atmospheric greenhouse gases. We evaluated impacts of conservation agriculture on change in total soil organic C (SOC) and relationship between C addition and storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) crops were grown during the first three years (2008–2011) and in the last year, maize (Zea mays L.), wheat and green gram (Vigna radiate L.) were cultivated. Results indicate the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had nearly 28 and 26% higher total SOC stock compared with conventional tillage and bed planting (CT-B) (∼5.5 Mg ha−1) in the 0–5 cm soil layer. Plots under ZT-B and ZT-F contained higher total SOC stocks in the 0–5 and 5–15 cm soil layers than CT-B plots. Although there were significant variations in total SOC stocks in the surface layers, SOC stocks were similar under all treatments in the 0–30 cm soil layer. Residue management had no impact on SOC stocks in all layers, despite plots under cotton/maize + wheat residue (C/M+ W RES) contained ∼13% higher total SOC concentration than no residue treated plots (N RES; ∼7.6 g kg−1) in the 0–5 cm layer. Hence, tillage and residue management interaction effects were not significant. Although CT-B and ZT-F had similar maize aboveground biomass yields, CT-F treated plots yielded 16% less maize biomass than CT-B plots. However, both wheat and green gram (2012) yields were not affected by tillage. Plots under C/M + W RES had ∼17, 13, 13 and 32% higher mean cotton, maize, wheat and green gram aboveground biomass yields than N RES plots, yielding ∼16% higher estimated root (and rhizodeposition) C input in the 0–30 cm soil layer than N RES plots. About 9.3% of the gross C input contributed towards the increase in SOC content under the residue treated plots. However, ∼7.6 and 10.2% of the gross C input contributed towards the increase in SOC content under CT and ZT, respectively. Thus, both ZT and partial or full residue retention is recommended for higher soil C retention and sustained crop productivity.  相似文献   

4.
Intercropping and drip irrigation with plastic mulch are two agricultural practices used worldwide. Coupling of these two practices may further increase crop yields and land and water use efficiencies when an optimal spatial distribution of soil water contents (SWC), soil temperatures, and plant roots is achieved. However, this coupling causes the distribution of SWCs, soil temperatures, and plant roots to be more complex than when only one of these agricultural practices are used. The objective of this study thus was to investigate the effects of different irrigation treatments on spatial distributions of SWCs, soil temperatures, and root growth in a drip-irrigated intercropping field with plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate the spatial distribution of SWCs, soil temperatures, and plant roots with respect to dripper lines and plant locations. There were significant differences (p < 0.05) in SWCs in the 0–40 cm soil layer for different irrigation treatments and between different locations. The maximum SWC was measured under the plant/mulch for the T1 treatment, while the minimum SWC was measured under the bare soil surface for the T3 treatment. This was mainly due to the location of drippers and mulch. However, no differences in SWCs were measured in the 60 100 cm soil layer. Significant differences in soil temperatures were measured in the 0 5 cm soil layer between different irrigation treatments and different locations. The soil temperature in the subsoil (15 25 cm) under mulch was higher than under the bare surface. The overlaps of two plant root systems in an intercropping field gradually increased and then decreased during the growing season. The roots in the 0 30 cm soil layer accounted for about 60% 70% of all roots. Higher irrigation rates produced higher root length and weight densities in the 0 30 cm soil layer and lower densities in the 30 100 cm soil layers. Spatial distributions of SWCs, soil temperatures, and plant roots in the intercropping field under drip irrigation were significantly influenced by irrigation treatments and plastic mulch. Collected experimental data may contribute to designing an optimal irrigation program for a drip-irrigated intercropping field with plastic mulch.  相似文献   

5.
In Mediterranean environments, flood irrigation of rice (Oryza sativa L.) crops is in danger of disappearance due to its unsustainable nature. The aim of the present study was to determine the short- and long-term effects of aerobic rice production, combined with conventional and no-tillage practices, on soils' physical, physicochemical, and biological properties, as well as on the rice yield components and productivity in the semi-arid Mediterranean conditions of SW Spain. A field experiment was conducted for three consecutive years (2011, 2012, and 2013), with four treatments: anaerobic with conventional tillage and flooding (CTF), aerobic with conventional tillage and sprinkler irrigation (CTS), aerobic with no-tillage and sprinkler irrigation (NTS), and long-term aerobic with no-tillage and sprinkler irrigation (NTS7). Significant soil properties improvements were achieved after the long-term implementation of no-tillage and sprinkler irrigation (NTS7). The short-term no-tillage and sprinkler irrigated treatment (NTS) gave lower yields than CTF in 2011 and 2012, but reached similar yields in the third year (NTS 8229 kg ha−1; CTF 8926 kg ha−1), with average savings of 75% of the total amount of water applied in CTF. The NTS7 data showed that high yields (reaching 9805 kg ha−1 in 2012) and water savings are sustainable in the long term. The highest water productivity was with NTS7 in 2011 (0.66 g L−1) and 2012 (1.46 g L−1), and with NTS in 2013 (1.05 g L−1). Thus, mid- and long-term implementation of sprinkler irrigation combined with no-tillage may be considered as a potentially productive and sustainable rice cropping system under Mediterranean conditions.  相似文献   

6.
Agricultural soil could be made to serve as a sink rather than a source of greenhouse gases by suitable soil management. This study was, therefore, conducted to assess the impact of tillage and fertilizer application on soil and plant carbon and nitrogen fractionation and intrinsic water use efficiency (iWUE). The experiment was a split–split-plot factorial design with three replications. The main plot consisted of two tillage treatments: zero tillage (ZT) and conventional tillage (CT). The sub-plot contained four NPK fertilizer treatments (0, 90, 120 and 150 kg N ha−1), while the sub–sub-plot comprised three poultry manure (PM) treatments (0, 10 and 20 Mg ha−1). Soil carbon and nitrogen sequestration were evaluated using stable isotope of carbon (δ13C) and nitrogen (δ15N). The δ13C in maize plant was used to obtain iWUE. It was observed that soil δ13C and δ15N were more depleted under ZT than CT and in plots treated with 20 Mg ha−1 PM (PM20) implying carbon and nitrogen sequestration under ZT and by PM20. Relative to the control, application of PM20 raised soil δ15N enrichment by 82% and 96% under CT and ZT, respectively. Higher iWUE of 25.7% was obtained under CT and was significantly higher than the iWUE values under ZT in the second year of the study while the iWUE was significantly lower with PM20 application than other fertilizer treatments. The significant δ13C depletion and hence lower iWUE with combination of NPK fertilizer and PM under CT than the control implied that soil disturbance under tilled plots was mediated by combined nutrient management thereby limiting soil C available for fractionation resulting in lower iWUE. This suggests that conservation tillage such as zero tillage and integrated application of organic and inorganic fertilizers are good strategies for reducing soil carbon and nitrogen emission.  相似文献   

7.
Soil management systems may negatively affect the quality of the soil. Policymakers and farmers need scientific information to make appropriate land management decisions. Conventional (CT) and zero tillage (ZT) are two common soil management systems. Comparative field studies under controlled conditions are required to determine the impact of these systems on soil quality and yields. The research presented studied plant and soil physical and chemical characteristics as affected by different agricultural management practices, i.e. ZT and CT, cropped with continuous wheat or maize in monoculture (M) or in a yearly rotation (R) of these two crops, either with residue retention (+r) or without residues retention (?r), in an experimental field in the Transvolcanic Belt of Mexico after 14 years. The dominant factors defining soil quality were organic C, total N, moisture, aggregate stability, mechanical resistance, pH and EC. The principal component combining the variables organic C, total N, aggregate stability and moisture content showed the highest correlations with final yield (R = 0.85 for wheat and 0.87 for maize).After 14 years of continuous practice, ZTM + r and ZTR + r had the best soil quality and produced the highest wheat and maize yields of average 2001–2004 (6683 and 7672 kg ha?1 and 5085 and 5667 kg ha?1, respectively). Removing the residues, i.e. treatments ZTM ? r with maize (average 2001–2004: 1388 kg ha?1) and ZTR ? r and CTR ? r with wheat (average 2001–2004: 3949 and 5121 kg ha?1), gave the lowest yields and less favourable soil physical and chemical characteristics compared to the other practices. It was found that zero tillage with residue retention is a feasible management technology for farmers producing maize and wheat in the agro-ecological zone studied, resulting in a better soil quality and higher yields than with the conventional farmer practice (maize monoculture, conventional tillage and residue removal).  相似文献   

8.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

9.
The effects of soil tillage and straw management systems on the grain yield and nitrogen use efficiency of winter wheat (Triticum aestivum L. em. Thell.) were evaluated in a cool Atlantic climate, in central Ireland between 2009 and 2011. Two tillage systems, conventional tillage (CT) and reduced tillage (RT) each with and without incorporation of the straw of the preceding crop, were compared at five levels of fertiliser N (0, 140, 180, 220 and 260 kg N ha−1).CT had a significantly higher mean grain yield over the three years but the effect of tillage varied between years. Yields did not differ in 2009 (Year 1), while CT produced significantly higher grain yields in 2010 (Year 2), while RT produced the highest yields in 2011 (Year 3). Straw incorporation had no significant effect in any year.Nitrogen application significantly increased the grain yields of all establishment treatment combinations. Nitrogen use efficiency (NUE) ranged from 14.6 to 62.4 kg grain (85% DM) kg N ha−1 and decreased as N fertiliser rate was increased.The CT system had a significantly higher mean NUE over the three years but the effect of tillage varied with years. While there was no tillage effect in years 1 and 3, CT had a significantly higher NUE than RT in year 2. Straw management system had minimal effect on NUE in any year.The effect of tillage and N rate on soil mineral N content also varied between years. While there was no tillage effect in years 1 and 3, RT had significantly larger soil N contents than CT in the spring before N application, and post-harvest in year 2. N application rates had no effect on soil N in year 1, increased residual N content in year 2 and had an inconsistent effect in year 3. Straw management had no significant effect on soil mineral N content.These results indicate that RT establishment systems can be used to produce similar winter wheat yields to CT systems in a cool Atlantic climate, providing weather conditions at establishment are favourable. The response to nitrogen is similar with both tillage systems where the crop is successfully established. Straw management system has very little effect on crop performance or nitrogen uptake.  相似文献   

10.
The experiment was conducted to evaluate the agronomic benefit of the application of organic fertilizers combined with different soil tillage on quantitative and qualitative components of winter wheat (Triticum durum Desf., cv. ‘Simeto’) and on chemical soil fertility parameters. The environmental impact, due to heavy metals introduced in soil-plant system, was further investigated. Soil tillage treatments consisted of conventional (CT) and minimum tillage (MT). Fertilization treatments were: mineral at 100 kg N ha−1 (Nmin); municipal solid waste compost at 100 kg N ha−1 (Ncomp); 50 kg N ha−1 of both compost and mineral fertilizers (Nmix); sewage sludge at 100 kg N ha−1 (Nss). These treatments were compared with an unfertilized control (N0). No significant difference was observed between the two soil tillage treatments for quantitative yield production, while among the fertilization treatments Nss did not show any significant difference compared to Nmin. At the end of the research, the fertility of the soil (oxidable carbon, total nitrogen, available phosphorus) was on average higher in Ncomp and Nss treatments compared to the N0 and Nmin ones. The overall distribution of heavy metals in soil-plant system respect to the different fertilizer treatments has not allowed to grouped their effects with Principal Components Analysis. This result showed that the amount of potential pollutants applied by organic amendments did not modified the dynamic equilibrium of the soil–plant system. The MT, as well as the fertilization with the application of sewage sludge (Nss), allowed to reach productive performance similar to conventional management (CT with Nmin). Here we demonstrate that, in the short term period, sustainable agronomical techniques can replace the conventional one with environmental benefit.  相似文献   

11.
An agronomic research was conducted in Tuscany (Central Italy) to evaluate the effects of an advanced irrigation system on the water use efficiency (WUE) of a tomato crop and to investigate the ability of soil and vegetation spectroradiometry to detect and map WUE. Irrigation was applied following an innovative approach based on CropSense system. Soil water content was monitored at four soil depths (10, 20, 30 and 50 cm) by a probe. Rainfall during the crop cycle reached 162 mm and irrigation water applied with a drip system amounted to 207 mm, distributed with 16 irrigation events. Tomato yield varied from 7.10 to 14.4 kg m−2, with a WUE ranging from 19.1 to 38.9 kg m−3. The irrigation system allowed a high yield levels and a low depth of water applied, as compared to seasonal ET crop estimated with Hargraves’ formula and with the literature data on irrigated tomato. Measurements were carried out on geo-referenced points to gather information on crop (crop yield, eighteen Vegetation indices, leaf area index) and on soil (spectroradiometric and traditional analysis). Eight VIs, out of nineteen ones analyzed, showed a significant relationship with georeferenced yield data; PVI maps seemed able to return the best response, before harvesting, to improve the knowledge of the area of cultivation and irrigation system. CropSense irrigation system reduced seasonal irrigation volumes. Some vegetation indexes were significantly correlated to tomato yield and well identify, a posteriori, crop area with low WUE; spectroradiometry can be a valuable tool to improve irrigated tomato field management.  相似文献   

12.
Enhancing dry matter production with higher partitioning to fruit bunches is important for sustainable intensification of oil palm. A series of best management practices including site-specific nutrient management, canopy management, and harvesting has been developed for oil palm plantations. However, the effects of these practices on dry matter production and partitioning, and how the effects vary with climatic and soil conditions of plantation sites, remain largely unknown. We established a four-year field trial including 30 paired commercial blocks across Sumatra and Kalimantan, Indonesia. The paired treatments included site-specific best management practices, and standard estate practices as the control. The annual production of aboveground dry matter was 30.0 ± 0.5 t ha−1 yr−1 (mean ± se) under best management practices, higher than 28.8 ± 0.5 t ha−1 yr−1 under standard estate practices. The bunch index, an indicator of the fruit production efficiency, increased by 12% under best management practices compared to standard estate practices. Partitioning of dry matter to the fronds decreased by 8% under best management practices, compared to standard estate practices. The positive effect of best management practices on the annual production of total aboveground dry matter was stronger in the plantation site with higher annual rainfall. These results are useful for optimizing management practices to improve sustainable intensification of oil palm.  相似文献   

13.
Decreasing the corn (Zea mays L.) gap between the potential yield and farm yield and reducing the risk of grain yield of drought are very important for corn production in the Corn Belt of Northeast China (CBNC). To achieve a high and stable corn yield, the effects of supplementary irrigation on yield, water use efficiency (WUE) and irrigation water use efficiency (IWUE) were studied using a modelling approach. The Root Zone Water Quality Model 2 was parameterized and evaluated using two years of experimental data in aeolian sandy soil and black soil. The evaluated model was then used to investigate responses to various irrigation strategies (rainfed, full irrigation and 12 single irrigation scenarios) using long-term weather data from 1980 to 2012. Full irrigation guarantees a high and stable corn grain yield (12.92 Mg ha−1 and has a coefficient of variation (CV) of 14.8% in aeolian sandy soil; 12.30 kg Ma−1 and CV of 11.1% in black soil), but has a low water use efficiency (19.92 and 21.81 kg ha−1 mm−1) and a low irrigation water use efficiency (10.01 and 11.03 kg ha−1 mm−1). A single irrigation can increase corn yields by 3–35% for aeolian sandy soil and 5–35% for black soil over different irrigation dates compared with no irrigation. The most suitable single irrigation date was during late June to early July for aeolian sandy soil (yield = 10.73 Mg ha−1 and WUE = 27.94 kg ha−1 mm−1) and early to mid-July for black soil (yield = 11.20 Mg ha−1 and WUE = 27.70 kg ha−1 mm−1). The lowest yield risk of falling short of the yield goal of 8, 9, and 10 Mg ha−1 were 9.1%, 18.2%, and 33.33% in aeolian sandy soil and 3.0%, 15.25, and 21.2% in black soil when an optimized single irrigation was applied in late June or early July, respectively. Therefore, an optimized single irrigation should be applied in late June to early July with the irrigation amount to refill soil water storage of root zone to field capacity in CBNC.  相似文献   

14.
Different tillage systems (conventional, minimum, raised bed and no tillage) and four mulch levels (control, polythene, straw and soil) were compared in maize (Zea mays) and wheat (Triticum aestivum) production for three years on an experimental field (sandy loam) located at Dry Land Research Sub Station, Dhiansar, Jammu. Each treatment was replicated four times in split plot design. The aim of the research was to determine the influence of tillage and mulch practices on economics, energy requirement, soil physical properties and performance of maize and wheat. Tillage methods significantly affected the soil physical properties as change in soil moisture contents and infiltration rate of soil was recorded. The soil moisture contents in minimum tillage (MT) were maximum (12.4%, 16.6%) in surface soil as compared to conventional tillage (CT) in maize and wheat crops, respectively. Comparing to the CT infiltration rate was (1.16times, 1.21times and 1.11times) higher in minimum tillage (MT), no tillage (NT) and raised bed (RB), respectively in kharif season. Similar results were also found in rabi season. The greatest maize yield of 1865 kg ha?1 was achieved with CT system while not significantly lower yield was achieved with MT system (1837 kg ha?1). However, wheat yield was recorded higher in MT as compare to the CT system. Comparing to the energy requirement of different operations, MT required 34.3% less, NT 31.1% less and RB 46.0% less than the CT system. MT system saved 2.5 times energy in tillage operation compared to the CT system. The economic analysis also revealed that the maximum benefits could be obtained from MT (EUR 202.4 ha?1) followed by RB (EUR 164.2 ha?1) and NT (EUR 158.3 ha?1) and lowest in CT (EUR 149.5 ha?1). Benefit-cost ratio was highest in MT (0.71) and lowest in CT (0.44). Results revealed that mulch significantly affected the soil physical properties and growth of maize. The maximum soil moisture content, infiltration rate and grain yield of maize and wheat recorded higher in mulching practices over no mulch treatment. Polythene mulch and straw mulch were almost equally valuable in maize and wheat sequence. Tillage (minimum) and mulch (polythene and straw) have pronounced effect on soil physical properties (improved infiltration rate and conserve soil water), energy requirement, economics and growth of maize and wheat.  相似文献   

15.
The aim of the present work was to evaluate the effect of soil water availability and nitrogen fertilization on yield, water use efficiency and agronomic nitrogen use efficiency of giant reed (Arundo donax L.) over four-year field experiment.After the year of establishment, three levels for each factor were studied in the following three years: I0 (irrigation only during the year of establishment), I1 (50% ETm restitution) and I2 (100% ETm restitution); N0 (0 kg N ha−1), N1 (60 kg N ha−1) and N2 (120 kg N ha−1).Irrigation and nitrogen effects resulted significant for stem height and leaf area index (LAI) before senescence, while no differences were observed for stem density and LAI at harvest.Aboveground biomass dry matter (DM) yield increased following the year of establishment in all irrigation and N fertilization treatments. It was always the highest in I2N2 (18.3, 28.8 and 28.9 t DM ha−1 at second, third and fourth year growing season, respectively). The lowest values were observed in I0N0 (11.0, 13.4 and 12.9 t DM ha−1, respectively).Water use efficiency (WUE) was significantly higher in the most stressed irrigation treatment (I0), decreasing in the intermediate (I1) and further in the highest irrigation treatment (I2). N fertilization lead to greater values of WUE in all irrigation treatment.The effect of N fertilization on agronomic nitrogen use efficiency (NUE) was significant only at the first and second growing season.Giant reed was able to uptake water at 160–180 cm soil depth when irrigation was applied, while up to 140–160 cm under water stress condition.Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.  相似文献   

16.
One experiment lasting for two years was carried out at Pegões (central Portugal) to estimate the impact of mature white lupine residue (Lupinus albus L.) on yield of fodder oat (Avena sativa L. cv. Sta. Eulalia) as the next crop in rotation, comparing with the continuous cultivation of cereal, under two tillage practices (conventional tillage and no-till) and fertilized with five mineral nitrogen (N) rates, with three replicates. Oat as a first crop in the rotation provided more N to the agro-ecosystem (63 kg N ha−1) than did lupine (30–59 kg N ha−1). This was at a cost of 100 kg of mineral N ha−1, whereas lupine was grown without addition of N. A positive response of oat as a second crop was obtained per kg of lupine-N added to the system when compared with the continuous oat–oat. The cereal also responded positively to mineral N in the legume amended soil in contrast with the oat–oat sequence where no response was observed, partly due to the fast mineralization rate of lupine residue and a greater soil N immobilization in the continuous oat system. Each kg N ha−1 added to the soil through the application of 73 kg DM ha−1 mature lupine residue (above- and belowground material) increased by 72 kg DM ha−1 the oat biomass produced as the second crop in rotation when 150 kg mineral N ha−1 were split in the season, independent of tillage practice. Mature legume residue conserved in the no-tilled soil depressed the yield of succeeding cereal but less than the continuous oat–oat for both tillage practices, where the application of mineral N did not improve the crop response.  相似文献   

17.
Biomass productivity, nitrogen recovery fraction and nitrogen utilization efficiency (NUE) of kenaf (Hibiscus cannabinus L.) cultivar Tainung 2 were tested, under three Lens culinaries treatments (incorporated, harvested before the sowing of the energy crop and mono-cropping) and four nitrogen dressings (0, 50, 100 and 150 kg ha−1), in two field experiments carried out on a fertile, clayey to loamy soil, and on a sandy soil of moderate fertility, in central Greece, over the period 2007–2009. The obtained results showed a positive response in L. culinaries cover cropping on kenaf total yield, on both experimental sites. Total dry biomass fluctuated from 16.07 to 21.46 t ha−1 for incorporated plots and from 13.63 to 16.55 t ha−1 for control treatments (relied only on applications of N-fertilization) for sandy soil, and from 14.98 to 19.28 t ha−1 in case of legume incorporation and from 12.34 to 16.69 t ha−1 for control plots, for clayey soil, respectively. The evaluated NUE was 76 kg kg−1, for sandy soil, and 72 kg kg−1, for clay soil. The recovery fraction escalated from 41% in control plots to 70% in plots with previous L. culinaries cultivation for sandy soil, while for clayey soil an increase of 20% was recorded, indicating a prominent effect of legume cover-cropping management.  相似文献   

18.
Strip tillage is a conservative technique widespread overseas with recognized environmental, agronomical and economic benefits. In Europe it has been proposed only recently and is almost unknown by farmers of Italy and other Mediterranean countries, where its compliance with soil and climate environments needs to be evaluated. For this reason, a two-year field trial comparison was carried out between strip tillage, minimum tillage and no tillage for the cultivation of maize in the Po valley, as representative crop and environment for the Italian and Southern Europe intensive agriculture. The aim was to evaluate effects on seedbed quality, weed infestation, and maize performance from crop establishment to final harvest.The experiment was conducted on a sandy-loam soil with high chemical fertility and good water availability for the crop. Strip tillage was carried out by an original passive tool implement hitched to a pneumatic drill operating at a forward speed of around 6 km h−1. We determined soil penetration resistance, bulk density, water content, clod size distribution, ground residue cover, number of weeds along crop rows and between rows, maize drilling depth, crop emergence, biomass accumulation and grain yield.Strip tillage moved less soil and left higher ground residue cover than minimum tillage, while the seedbed prepared by the two techniques did not differ for suitability to drilling, root exploration and crop growth. In fact, maize grown after strip tillage emerged fast and regularly approximating the wished plant density, experienced a limited weed infestation, and showed high total biomass and grain yields, similar to those obtained with minimum tillage.  相似文献   

19.
Kenaf is a warm-season species that recently has been proved to be a good source of biomass for cellulose pulp for the paper industry in Mediterranean countries, where the use of hemp is problematic for legal reasons. A two-year research program aiming at studying the effects of different water regimes and nitrogen fertilization levels, upon plant growth, leaf area index, biomass accumulation, water and radiation use efficiency, was carried out on kenaf under a typically semi-arid Mediterranean climate of South Italy. In cv. Tainung 2, four different water regimes (I0 = no irrigation, I25, I50 and I100 = 25, 50 and 100% ETc restoration, respectively) and three nitrogen levels (N0 = no nitrogen, N75 and N150 = 75 and 150 kg ha−1 of N, respectively) were studied. The amount of water applied strongly affected plant growth (in terms of LAI, plant height and biomass) and final total and stem dry yield, which significantly increased from I0 to I100. Nitrogen did not exert any beneficial effect upon dry yield. Radiation Use Efficiency (RUE), calculated in the second year only, was the highest (1.95 g DM MJ−1) in fully irrigated treatment (I100) and the lowest (0.86 g DM MJ−1) in the dry control.Water use efficiency (WUE) was rather similar among water regimes, whilst irrigation water use efficiency (IWUE) progressively increased with the decrease of total volume of water distributed to the crop by irrigation, from 3.47 to 12.45 kg m−3 in 2004 and from 4.27 to 7.72 kg m−3 in 2005. The results obtained from this research demonstrate that in semi-arid areas of South Italy, irrigation at a reduced rate (50% ETc restoration) may be advantageous, since it allowed a 42–45% irrigation water saving, when compared to the fully irrigation treatment, against a 23% (in 2004) and 36% (in 2005) yield reduction, and a still good efficiency (near that potential) in transforming the solar radiation in dry biomass was maintained (RUE = 1.76 g DM MJ−1, against 1.95 g DM MJ−1 in fully irrigated treatment).  相似文献   

20.
Oil palm, currently the world’s main vegetable oil crop, is characterised by a large productivity and a long life span (≥25 years). Peak oil yields of 12 t ha−1 yr−1 have been achieved in small plantations, and maximum theoretical yields as calculated with simulation models are 18.5 t oil ha−1 yr−1, yet average productivity worldwide has stagnated around 3 t oil ha−1 yr−1. Considering the threat of expansion into valuable rainforests, it is important that the factors underlying these existing yield gaps are understood and, where feasible, addressed. In this review, we present an overview of the available data on yield-determining, yield-limiting, and yield-reducing factors in oil palm; the effects of these factors on yield, as measured in case studies or calculated using computer models; and the underlying plant-physiological mechanisms. We distinguish four production levels: the potential, water-limited, nutrient-limited, and the actual yield. The potential yield over a plantation lifetime is determined by incoming photosynthetically active radiation (PAR), temperature, atmospheric CO2 concentration and planting material, assuming optimum plantation establishment, planting density (120–150 palms per hectares), canopy management (30–60 leaves depending on palm age), pollination, and harvesting. Water-limited yields in environments with water deficits >400 mm year−1 can be less than one-third of the potential yield, depending on additional factors such as temperature, wind speed, soil texture, and soil depth. Nutrient-limited yields of less than 50% of the potential yield have been recorded when nitrogen or potassium were not applied. Actual yields are influenced by yield-reducing factors such as unsuitable ground vegetation, pests, and diseases, and may be close to zero in case of severe infestations. Smallholders face particular constraints such as the use of counterfeit seed and insufficient fertiliser application. Closing yield gaps in existing plantations could increase global production by 15–20 Mt oil yr−1, which would limit the drive for further area expansion at a global scale. To increase yields in existing and future plantations in a sustainable way, all production factors mentioned need to be understood and addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号