首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
CAS‐12 is a sunflower mutant with increased levels of palmitic (C16: 0 = 30%) and oleic (C18: 1 = 55%) acids in its seed oil, hence it has a reduced linoleic acid content (C18: 2 < 5%). This study was conducted to determine the inheritance of high C16: 0 content and its relationship with high C18: 1 content in CAS‐12. Reciprocal crosses involving CAS‐12, CAS‐5 (high C16: 0 content), HAOL‐9 (high C18: 1 content) and HA‐89 (standard fatty acid profile) were made. The F1, F2 and BC1F1 generations were obtained. The genetic control of the high C16: 0 trait in CAS‐12 was partially recessive and gametophytic. In all cases, this character segregated in the ratio 19: 38: 7 (low: intermediate: high C16: 0 content) in the F2 generation. These results, together with the lack of segregation for C16: 0 content in crosses between CAS‐12 and CAS‐5, indicated that the genetic control of the high C16: 0 trait in CAS‐12 was similar to that in CAS‐5 in being controlled by partially recessive alleles (p1, p2, and p3) at three loci. Crosses between HA‐89 and CAS‐12, and HAOL‐9 and CAS‐5 (segregating for C16: 0 and C18: 1) demonstrated that the high C16: 0 and the high C18: 1 traits were independently inherited. However, C18: 1 segregation in these crosses exhibited reversal of dominance. Apparently, the low C18: 1 parental lines carried modifier genes causing the deviation.  相似文献   

2.
The high stearic acid sunflower mutant CAS-3 is characterized by a low seed oil content, which might represent a constraint for the commercial production of high stearic acid sunflower oil. The objective of the present research was to investigate the relationships between fatty acid profile and seed oil content in CAS-3. Plants of CAS-3 were reciprocally crossed with plants of breeding line ADV-37, with high oil content and standard fatty acid profile. Oil content and fatty acid composition were measured in individual F2 seeds and F2 plants (F3 seeds averaged). Both F2 seeds and F2 plants from the cross ADV-37 × CAS-3 had a significantly higher oil content than those from the reciprocal cross, which indicated the existence of cytoplasmic effects in the genetic control of the trait. A consistent negative correlation between oil content and palmitic acid and a positive correlation between oil content and oleic acid were detected both in F2 seeds and F2 plants. Conversely, no consistent correlation between oil content and stearic acid was observed, which suggested the feasibility of simultaneous selection for both traits.  相似文献   

3.
Olive growing has expanded considerably in the last few decades outside of the Mediterranean Basin to non-traditional regions in the Southern Hemisphere. When growing olive genotypes (i.e., varieties) outside of their area of origin, the importance of environmental factors such as temperature and genotype × environment interactions in determining olive oil production and oil quality has been suggested. In several Mediterranean varieties and one South American variety, we assessed the dynamics of fruit growth and oil accumulation along with the evolution of fatty acid composition at multiple locations over two growing seasons. Oleic acid content (%), the principal fatty acid present in olive oil, showed four contrasting patterns during fruit growth when modeled against thermal time from flowering using linear and bilinear regressions: (1) a sharp linear decrease for the varieties ‘Arauco’ and ‘Arbequina’; (2) a plateau followed by a late linear decrease of moderate slope for ‘Barnea’ and ‘Manzanilla Fina’; (3) a slow linear decrease for ‘Frantoio’; and (4) no decrease in ‘Coratina’. Linoleic acid (%) showed linear increases in ‘Arauco’ and ‘Arbequina’ that appear to be inversely related to the decreases in oleic acid, while bilinear patterns were found for many other varieties. Both the rates of fruit growth and of oil accumulation were more important in determining maximum fruit dry weight and oil concentration (%), respectively, than duration when expressed on a thermal time basis. Temperature during oil synthesis was negatively related to final oil concentration. Experiments under controlled conditions would greatly contribute to our understanding of how fruit growth as well as oil quantity and quality are influenced by environmental factors.  相似文献   

4.
Increases in the groat-oil content of oat (Avena sativa L.) increase the energy value of the grain and improve the feasibility of extracting oat oil for use as a vegetable oil. Nine cycles of recurrent selection for greater groat-oil content conducted in a genetically broad-based oat population resulted in dramatic increases in groat-oil content. Our objectives were todetermine if selection for greater groat-oil content affected fatty acid composition, grain quality traits (test weight and seed weight), or agronomic traits (straw yield, biomass, harvest index, heading date, and height). We evaluated 100 random lines from the base (C0) population and each of the nine selection cycle populations in three environments in order to estimate means, genetic variances, heritabilities, and genotypic and phenotypic correlations of grain quality and agronomic traits. We also evaluated 20 random lines from each population to estimate changes in fatty acid contents. Oleate and stearate contents increased over cycles of selection, as did the ratio of unsaturated to saturated fatty acids. Palmitate, linoleate, and linolenate contents and all grain quality and agronomic traits except harvest index decreased over cycles of selection. There was no evidence for reduced genetic variance or heritability in C9 for any trait, but the genotypic and phenotypic correlations between agronomic traits and oil content fluctuated over cycles. Selection for increased groat-oil content improved oil quality but reduced grain quality and agronomic performance of the population. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号