首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究探讨了有机栽培与常规栽培体系下水稻土微生物量及脲酶、酸性磷酸酶和过氧化氢酶的动态变化过程,以及有机栽培体系不同肥料调控措施对上述指标的影响.结果表明:与常规栽培水稻体系相比,有机栽培水稻有利于土壤微生物的生长和繁衍;水稻生长不同时期有机栽培方式的土壤微生物生物量碳、脲酶、酸性磷酸酶和过氧化氢酶活性均高于常规栽培体系.就水稻全生育期而言,土壤微生物生物量碳高于常规栽培7.3%~9.1%;脲酶、酸性磷酸酶和过氧化氢酶活性分别高于常规栽培7.3%~14.5%、5.2%~6.5%和12.5%~29.2%;有机水稻栽培体系下配施生态肥,在有机肥施用量减半时,土壤微生物生物量碳含量及土壤脲酶、酸性磷酸酶和过氧化氢酶活性较单施有机肥平均分别提高1.6%、6.8%、1.3%和14.8%,在水稻生长前期和中期该增加作用尤为显著.  相似文献   

2.
Soil samples at 0--10 cm in depth were collected periodically at paired fields in Corvallis, Oregon, USA to compare differences in soil microbial and faunal populations between organic and conventional agroecosystems Results showed that the organic soil ecosystem had a significantly higher (P < 0.05) average number or biomass of soil bacteria; densities of flagellates, amoebae of protozoa; some nematodes, such as microbivorous and predaceous nematodes and plant-parasitic nematodes; as well as Collembola. Greater numbers of Rhabditida (such as Rhabditis spp.), were present in the organic soil ecosystem while Panagrolaimus spp. Were predominant in the conventional soil ecosystem. The omnivores and predators of Acarina in the Mesostigmata (such as Digamasellidae and Laelapid), and Prostigmata (such as Alicorhaiidae and Rhagidiidae), were also more abundant in the organic soil ecosystem. However, fungivorous Prostigmata (such as Terpnacaridae and Nanorchestidae) and Astigmata (such as Acarida) were significantly higher (P < 0.05) in the conventional soil ecosystem, which supported the finding that total fungal biomass was greater in the conventional soil ecosystem. Seansonal variations of the population depended mostly on soil moisture condition and food web relationship. The population declined from May to October for both agroecosystems. However, higher diversities and densities of soil biota survived occurred in the organic soil ecosystem in the dry season.  相似文献   

3.
Organic farming and improvements to agricultural sustainability are often seen as synonymous. However, an extensive European review demonstrated that in practice this is not always true. This study aims to compare the status of soil and water properties between separate fields managed in either an organic or a conventional manner. Soil samples were collected from 16 pairs of farms, throughout England, with both arable and grass fields within each pair on similar soil type. Chemical (nutrients, pesticides, herbicides) and physical (aggregate stability, field capacity, shear strength, soil organic matter, infiltration rates) soil properties were measured in four main soil texture classes in organic and conventional fields. The physical soil properties varied significantly between the different classes of texture and land use. The heavier textured soils have significantly higher soil organic carbon (SOC), aggregate stability and shear strength. The coarse‐textured soils have significantly lower field capacity moisture contents. The grassland has a significantly higher level of SOC, field capacity moisture content, aggregate stability and soil shear strength. However, there were no significant differences between organic and conventional treatments for any of the soil physical properties measured. There were fewer traces of agrochemicals in the soil water from the organic fields compared with the conventionally managed fields. The conventional arable fields had higher levels of total inorganic nitrogen than the other land uses and treatments. There was evidence to show that infiltration rates were significantly higher on organically managed grassland soils (7.6 mm/h) than conventionally managed grassland (2.5 mm/h) with lower stocking rates. The results suggest that improved grassland management, whether organic or conventional, could reduce predicted runoff by 28%.  相似文献   

4.
5.
Soil tillage is an agricultural practice that directly affects the global carbon cycle. Our study sought to assess the implications of adopting sunn hemp cover crops with different tillage practices on CO2 emissions for two soil types (clayey and sandy soil) cultivated with sugarcane in Brazil. The experimental design was a split‐plot with randomized blocks, with the main plots being with cover crop or fallow and sub‐plots being under conventional or minimum tillage. Our results indicate that during the first 50 days after soil tillage, the variation in soil CO2 emissions was stimulated by cover crop and soil tillage, while after that, it became dominated by the root respiration of sugarcane plants. We also found that over the first 97 days after the tillage, the clayey soil showed differences between minimum tillage with cover crop and fallow. Conversely, for sandy soil over the first 50 days following, there were differences between the tillage systems under cover cropping. Emissions from sugarcane rows were found to be greater than those from inter‐row positions. We concluded that soils under different textural classes had distinct patterns in terms of soil CO2 emissions. The correct quantification of CO2 emissions during the sugarcane renovation period should prioritize having a short assessment period (~50 days after soil tillage) as well as including measurements at row and inter‐row positions.  相似文献   

6.
Although previous researchers suggest that carbon dioxide (CO2) emissions are influenced by plastic mulching, the effects of this method on soil CO2 concentration and emissions remain uncertain. Soil CO2 concentration and emissions from ridge and furrow soils under mulched and nonmulched treatments in 2014 and 2015 were measured. The soil CO2 concentration was observed using modified diffusion equilibrium samplers, and the soil CO2 emissions were measured using a closed‐chamber method. In the ridge soil, although the plastic mulching increased the CO2 concentration by 49% (0–40 cm), no significant difference in CO2 emissions was found between the mulched and nonmulched treatments. Accordingly, the relationship between soil CO2 concentration and CO2 emissions was affected by plastic mulching, with a lower slope of the linear equation found in the mulched treatment compared to the nonmulched treatment. In the furrow soil, the plastic mulching increased the CO2 concentration and emissions by 15% and 21%, respectively. In conclusion, plastic mulching significantly increased the CO2 concentration in both the ridge and furrow soils and increased the cumulative CO2 emissions by 8%. The temperature sensitivity of the soil CO2 concentration increased with soil depth, whereas the plastic mulching only influenced the temperature sensitivity of the soil CO2 concentration in both the ridge and furrow soils at a depth of 40 cm. Our results suggest that the temperature sensitivity of the soil CO2 concentration not only reflects the effects of temperature on CO2 production but also indicates poor diffusion in the deep profile.  相似文献   

7.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

8.
The aim of this study was to evaluate the interaction between yield levels of nonleguminous crops and soil organic matter (SOM) under the specific conditions of organic and conventional farming, respectively, and to identify implications for SOM management in arable farming considering the farming system (organic vs. conventional). For that purpose, correlations between yield levels of nonlegume crops and actual SOM level (Corg, Nt, Chwe, Nhwe) as well as SOM‐level development were examined including primary data from selected treatments of seven long‐term field experiments in Germany and Switzerland. Yield levels of nonlegume crops were positively correlated with SOM levels, but the correlation was significant only under conditions of organic farming, and not with conventional farming treatments. While absolute SOM levels had a positive impact on yield levels of nonlegumes, the yield levels of nonlegumes and SOM‐level development over time correlated negatively. Due to an increased demand of N from SOM mineralization, higher yield levels of nonlegumes obviously indicate an increased demand for OM supply to maintain SOM levels. Since this observation is highly significant for farming without mineral‐N fertilization but not for farming with such fertilization, we conclude that the demand of SOM‐level maintenance or enhancement and thus adequate SOM management is highly relevant for crop production in organic farming both from an agronomical and ecological point of view. Under conventional management, the agronomic relevance of SOM with regard to nutrient supply is much lower than under organic management. However, it has to be considered that we excluded other possible benefits of SOM in our survey that may be highly relevant for conventional farming as well.  相似文献   

9.
利用室内培养实验,分析燥红壤和砖红壤中分别施加N0(不添加氮素)、N1(氮添加量为100mg·kg−1)、N2(氮添加量为200mg·kg−1)和N3(氮添加量为300mg.kg−1)4个水平氮后对土壤性质及N2O、CO2排放的影响。结果表明:氮肥添加显著降低了土壤pH和有机碳含量。相较于N0,燥红壤N1、N2和N3处理pH和有机碳降幅分别为8%~18%和4%~12%,砖红壤降幅分别为5%~23%和3%~15%;添加氮肥后各处理土壤全氮含量显著增加,燥红壤和砖红壤分别增加15%~54%和13%~52%。氮施入增加了土壤NH4+−N和NO3−N含量,各处理土壤铵态氮和硝态氮含量均表现为N3>N2>N1>N0。氮添加促进土壤N2O和CO2排放,相较于N0,燥红壤N2O和CO2累积排放量分别增加1176%~2425%和124%~281%,砖红壤分别增加1054%~1887%和138%~256%。施氮量和土壤类型是影响农田土壤N2O和CO2排放的重要因素。土壤N2O和CO2排放与施氮量呈线性显著相关,减少施肥是降低土壤N2O排放最直接和最有效的措施。与砖红壤相比,燥红壤N2O和CO2排放对氮素添加的响应更敏感。  相似文献   

10.
To quantify functionally important differences in soil organic matter (SOM) that result from use of different farming practices, soils from 9 long-term trials comparing manure+legume-based organic, legume-based organic, and conventional farming systems were collected and particulate organic matter (POM) was fractionated to reflect its position within the soil matrix. The free, light POM (FPOM; <1.6 g cm−3) not occluded within aggregates and occluded POM (OPOM; <2.0 g cm−3) were compared to an undifferentiated POM fraction (coarse fraction, CF; >53 μm) obtained by wet sieving. Fraction C, N, and hydrolyzable N (quantified using the Illinois test (IL-N)) were determined. Organic farming systems had greater quantities of C and N in the OPOM and CF and, greater IL-N contents in all POM fractions considered. The OPOM's C:N ratio (16-19) and was least in the manure+legume-based organic, intermediate in the legume-based organic, and greatest in the conventional systems (P<0.10). Trends in OPOM C:N and IL-N abundance suggested occluded POM was most decomposed, and possibly a greater N reservoir, in the manured soils. The FPOM quality reflected the residues added to each system and its removal improved resolution of quality-based differences in POM associated with long-term management. Subdivision of POM revealed differences in its quality that were not evident using the undifferentiated CF. Quantification of hydrolysable N (IL-N) in POM did not enhance our understanding of management's affect on SOM quality. This multi-site comparison showed organic management simultaneously increased the size of the labile N reservoir and the amount of POM protected within aggregates; and that, occluded POM is more decomposed in manure+legume- than in legume-based organic systems. The characteristics of POM reveal how organic practices improve SOM and suggest the nutrient and substrate decay dynamics of organic systems may differ as a result of the N fertilization strategies they employ.  相似文献   

11.
There is growing interest in investigations into soil carbon (C) sequestration, plant nutrients and biological activities in organic farming since it is regarded as a farming system that could contribute to climate mitigation and sustainable agriculture. However, most comparative studies have focused on annual crops or farming systems with crop rotations, and only a few on perennial crops without rotations, e.g. tea (Camellia sinensis (L.) O. Kuntze). In this study, we selected five pairs of tea fields under organic and conventional farming systems in eastern China to study the effect of organic farming on soil C sequestration, plant nutrients and biological activities in tea fields. Soil organic C, total nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), available nutrients, microbial biomass, N mineralization and nitrification were compared. Soil pH, organic C and total N contents were higher in organic tea fields. Soil microbial biomass C, N and P, and their ratios in organic C, total N and P, respectively, net N mineralization and nitrification rates were significantly higher in organic fields in most of the comparative pairs of fields. Concentrations of soil organic C and microbial biomass C were higher in the soils with longer periods under organic management. However, inorganic N, available P and K concentrations were generally lower in the organic fields. No significant differences were found in available calcium (Ca), Mg, sodium (Na), iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations between the two farming systems. These findings suggest that organic farming could promote soil C sequestration and microbial biomass size and activities in tea fields, but more N-rich organic fertilizers, and natural P and K fertilizers, will be required for sustainable organic tea production in the long term.  相似文献   

12.
An incubation experiment was carried out to investigate the interactions of two straw qualities differing in N content and two soils differently accustomed to straw additions. One soil under conventional farming management (CFM) regularly received straw, the other soil under organic farming management (OFM) only farmyard manure. The soils of the two sites were similar in texture, pH, cation‐exchange capacity, and glucosamine content. The soil from the OFM site had higher contents of organic C, total N, muramic acid, microbial biomass C and N (Cmic and Nmic), but a lower ergosterol content and lower ratios ergosterol to Cmic and fungal C to bacterial C. The straw from the CFM had threefold higher contents of total N, twofold higher contents of ergosterol and glucosamine, a 50% higher content of muramic acid, and a 30% higher fungal C–to–bacterial C ratio. The straw amendments led to significant net increases in Cmic, Nmic, and ergosterol. Microbial biomass C showed on average a 50% higher net increase in the organic than in the CFM soil. In contrast, the net increases in Nmic and ergosterol differed only slightly between the two soils after straw amendment. The CO2 evolution from the CFM soil always exceeded that from the OFM, by 50% or 200 µg (g soil)–1 in the nonamended control soil and by 55% or additional 600 µg (g soil)–1 in the two straw treatments. In both soils, 180 µg g–1 less was evolved as CO2‐C from the OFM straw. The metabolic quotient qCO2 was nearly twice as high in the control and in the straw treatments of the CFM soil compared with that of the OFM. In contrast, the difference in qCO2 was insignificant between the two straw qualities. Differences in the fungal‐community structure may explain to a large extent the difference in the microbial use of straw in the two soils under different managements.  相似文献   

13.
Organic farming is rapidly expanding worldwide. Plant growth in organic systems greatly depends on the functions performed by soil microbes, particularly in nutrient supply. However, the linkages between soil microbes and nutrient availability in organically managed soils are not well understood. We conducted a long-term field experiment to examine microbial biomass and activity, and nutrient availability under four management regimes with different organic inputs. The experiment was initiated in 1997 by employing different practices of organic farming in a coastal sandy soil in Clinton, NC, USA. Organic practices were designed by applying organic substrates with different C and N availability, either in the presence or absence of wheat-straw mulch. The organic substrates used included composted cotton gin trash (CGT), animal manure (AM) and rye/vetch green manure (RV). A commercial synthetic fertilizer (SF) was used as a conventional control. Results obtained in both 2001 and 2002 showed that microbial biomass and microbial activity were generally higher in organically than conventionally managed soils with CGT being most effective. The CGT additions increased soil microbial biomass C and activity by 103-151% and 88-170% over a period of two years, respectively, leading to a 182-285% increase in potentially mineralizable N, compared to the SF control. Straw mulching further enhanced microbial biomass, activity, and potential N availability by 42, 64, and 30%, respectively, relative to non-mulched soils, likely via improving C and water availability for soil microbes. The findings that microbial properties and N availability for plants differed under different organic input regimes suggest the need for effective residue managements in organic tomato farming systems.  相似文献   

14.
Seasonal wetland (dambo) cultivation in smallholder farming areas is important because it improves household food security. However, most farming practices, such as burning of vegetation and conventional tillage in dambo gardens, may reduce soil organic carbon (SOC) and nutrient dynamics. We evaluated the effects of simulated burning, vegetation clearing and clipping, and conventional tillage in dambo gardens on SOC, nutrient contents and biomass production over a 3-year period. The results showed that clearing and clipping of vegetation and conventional tillage reduced SOC, soil nutrient contents and biomass yields, while burning increased SOC and soil nutrient contents. For the 0–10 cm depth, conventional tillage, clearing and clipping resulted in a 37%, 34% and 18% decrease in SOC, respectively, after three seasons, burning resulted in a 25% increase in SOC, while there were no changes in the control after 3 years. For the 0–40 cm depth, the average change in SOC was 32%, 25% and 16% for conventional tillage, clearing and clipping, respectively. Locally and regionally, conventional tillage, clearing and clipping reduce SOC, nutrient contents and biomass production in dambos. Though annual burning increased SOC and nutrient contents in the short term, the long-term effects are uncertain, hence there is a need for long-term studies.  相似文献   

15.
This research attempted to investigate a part of the United Nations sustainable development goal 15, dealing with preventing land degradation and halting the loss of microorganisms’ diversity. Since soil deterioration and biodiversity loss in the Mediterranean area are occurring because of intensive management, we evaluated some biochemical and microbiological parameters and bacterial biodiversity under long-term conventional tillage (CT) and no-tillage (NT) practices, in Basilicata, a typical Region of Southern Italy, characterized by a semiarid ecosystem. The highest biological fertility index (BFI) (composed of soil organic matter, microbial biomass C, cumulative microbial respiration during 25 days of incubation, basal respiration, metabolic quotient and mineralization quotient) was determined for the 0–20 cm of NT soil (class V, high biological fertility level). The analysis of the taxonomic composition at the phylum level revealed the higher relative abundance of copiotrophic bacteria such as Proteobacteria, Actinobacteria and Bacteroidetes in the NT soil samples as compared to the CT soil. These copiotrophic phyla, more important decomposers of soil organic matter (SOM) than oligotrophic phyla, are responsible of a higher microbial C use efficiency (CUE) in tilled soil, being microbial community composition, C substrates content and CUE closely linked. The higher Chao1 and Shannon indices, under the NT management, also supported the hypothesis that the bacterial diversity and richness increased in the no-till soils. In conclusion, we can assume that the long-term no-tillage can preserve an agricultural soil in a semiarid ecosystem, enhancing soil biological fertility level and bacterial diversity.  相似文献   

16.
Reduction in soil disturbance can stimulate soil microbial biomass and improve its metabolic efficiency, resulting in better soil quality, which in turn, can increase crop productivity. In this study we evaluated microbial biomass of C (MB-C) by the fumigation-extraction (FE) or fumigation-incubation (FI) method; microbial biomass of N (MB-N); basal respiration (BR) induced or not with sucrose; metabolic quotient (obtained by the ratio BR/MB-C) induced (qCO2(S)), or not with sucrose (qCO2); and crop productivity in a 14-year experiment in the state of Paraná, southern Brazil. The experiment consisted of three soil-tillage systems [no-tillage (NT), conventional tillage (CT) and no-tillage using a field cultivator every 3 years (FC)] and two cropping systems [a soybean–wheat-crop sequence (CS), and a soybean–wheat–white lupin–maize–black oat–radish crop rotation (CR)]. There were six samplings in the 14th year, starting at the end of the winter crop (wheat in the CS and lupin in the CR plots) and finishing at full flowering of the summer crop (soybean in the CS and maize in the CR). Differences in microbiological parameters were greater than those detected in the total C (TCS) and total N (TNS) contents of the soil organic matter (SOM). Major differences were attributed to tillage, and on average NT was higher than the CT in the following parameters: TCS (19%), TNS (21%), MB-C evaluated by FE (74%) and FI (107%), and MB-N (142%). The sensibility of the microbial community and processes to soil disturbance in the tropics was highlighted, as even a moderate soil disturbance every 3 years (FC) affected microbial parameters but not SOM. The BR was the parameter that most promptly responded to soil disturbance, and strong differences were perceived by the ratio of qCO2 evaluated with samples induced and non-induced with sucrose. At plowing, the qCO2(S):qCO2 was five times higher under CT, indicating a C-starving low-effective microbial population in the C-usage. In general, crop rotation had no effect on microbial parameters or SOM. Grain yield was affected by tillage and N was identified as a limiting nutrient. Linear regressions between grain yields and microbial parameters showed that soybean was benefited from improvements in the microbial biomass and metabolic efficiency, but with no significant effects observed for the maize crop. The results also indicate that the turnover of C and N in microbial communities in tropical soils is rapid, reinforcing the need to minimize soil disturbance and to balance inputs of N and C.  相似文献   

17.
有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮   总被引:27,自引:6,他引:27  
土壤微生物量碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的组分,是反应土壤被干扰程度的重要灵敏性指标,通过设置相同有机碳施用量下不同有机物料处理的田间试验,研究了有机物料添加下土壤微生物量碳(soil microbial biomass carbon,MBC)、氮(soil microbial biomass nitrogen,MBN)和可溶性有机碳(dissolved organic carbon,DOC)、氮(dissolved organic nitrogen,DON)的变化特征及相互关系。结果表明化肥和生物碳、玉米秸秆、鲜牛粪或松针配施下土壤微生物量碳、氮和可溶性有机碳、氮显著大于不施肥处理(no fertilization,CK)和单施化肥处理,分别比不施肥处理和单施化肥平均高23.52%和12.66%(MBC)、42.68%和24.02%(MBN)、14.70%和9.99%(DOC)、22.32%和21.79%(DON)。化肥和有机物料配施处理中,化肥+鲜牛粪处理的微生物量碳、氮和可溶性有机碳、氮最高,比CK高26.20%(MBC)、49.54%(MBN)、19.29%(DOC)和32.81%(DON),其次是化肥+生物碳或化肥+玉米秸秆处理,而化肥+松针处理最低。土壤可溶性有机碳质量分数(308.87 mg/kg)小于微生物量碳(474.71 mg/kg),而可溶性有机氮质量分数(53.07 mg/kg)要大于微生物量氮(34.79 mg/kg)。与不施肥处理相比,化肥和有机物料配施显著降低MBC/MBN和DOC/DON,降低率分别为24.57%和7.71%。MBC和DOC、MBN和DON随着土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)的增加呈显著线性增加。MBC、MBN、DOC、DON、DOC+MBC和DON+MBN之间呈极显著正相关(P<0.01)。从相关程度看,DOC+MBC和DON+MBN较MBC、DOC、MBN、DON更能反映土壤中活性有机碳和氮库的变化,成为评价土壤肥力及质量的更有效指标。结果可为提高洱海流域农田土壤肥力,增强土壤固氮效果,减少土壤中氮素流失,保护洱海水质安全提供科学依据。  相似文献   

18.
A simple model to predict soil water components and the CO2 release for peat soils is presented. It can be used to determine plant water uptake and the CO2 release as a result of peat mineralization for different types of peat soils, various climate conditions, and groundwater levels. The model considers the thickness of the root zone, its hydraulic characteristics (pF, Ku), the groundwater depth and a soil‐specific function to predict the CO2 release as a result of peat mineralization. The latter is a mathematical function considering soil temperature and soil matric potential. It is based on measurements from soil cores at varying temperatures and soil water contents using a respiricond equipment. Data was analyzed using nonlinear multiple regression analysis. As a result, CO2 release equations were gained and incorporated into a soil water simulation model. Groundwater lysimeter measurements were used for model calibration of soil water components, CO2 release was adapted according long‐term lysimeter data of Mundel (1976). Peat soils have a negative water balance for groundwater depth conditions up to 80—100 cm below surface. Results demonstrate the necessity of a high soil water content i.e. shallow groundwater to avoid peat mineralization and soil degradation. CO2 losses increase with the thickness of the rooted soil zone and decreases with the degree of soil degradation. Especially the combination of deep groundwater level and high water balance deficits during the vegetation period leads to tremendous CO2 losses.  相似文献   

19.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

20.
The crop rotation system in organic farming is a determinant factor to accumulate and preserve soil organic matter (SOM), and in depth knowledge on its effects is still lacking. Tillage intensity in particular is crucial to maintain soil aggregates and protect SOM from degradation. The evolution of SOM was tested in two adjacent fields under two different rotation cropping systems (low-intensity tillage and high-intensity tillage), and the effect of a further cultivation of legume in both fields was evaluated using 13carbon (C)-nuclear magnetic resonance (NMR) and elemental analysis of samples isolated through combined aggregate size and density fractionation. The two adjacent fields had been managed using the following organic farming methods for 13 seasons since 1998: i) alfalfa-based, with nitrogen (N) enrichment and low-frequency tillage with alfalfa (Medicago sativa) (9 seasons), winter wheat (Triticum durum) (3 seasons), and broad bean (Vicia faba) (1 season) and ii) cereal-based, with N depletion and annual tillage with barley (Hordeum vulgare) (7 seasons), sunflower (Helianthus annuus) (2 seasons), broad bean (Vicia faba) (3 seasons), and bare fallow (1 season). Soil sampling was carried out at the end of the 13-year rotation (T0, November 2011) and after winter wheat and chickpea cultivation in both fields over two subsequent years (T1, July 2013). Bulk organic C was significantly higher in the alfalfa-based system than in the cereal-based system at both T0 and T1, with SOM occluded in soil aggregates and associated with mineral particles. In terms of the macroaggregates heavy fraction at T0, the alfalfa-based field contained twice the organic C of that in the cereal-based field, as well as three times the organic C in the occluded particulate organic matter (POM). The occluded POM (oPOM) had a lower aryl/O-alkyl C ratio in the alfalfa-based system than in the cereal-based system, suggesting that oPOM undergoes a lower degree of decomposition during low-intensity management. The aryl/O-alkyl C ratios of the macro-and microaggregate oPOM decreased from T0 to T1 in the cereal-based system, suggesting increased protection of these fractions by soil aggregates. Thus, including legumes in crop rotation appears to positively affect the accumulation of SOM associated with mineral particles and within soil aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号