首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
  • 1. In this work, carried out in the province of Murcia, a representative semi‐arid area of the Iberian Peninsula, water beetles were used as indicators to identify the aquatic ecosystems with the highest interest for conservation. For that purpose, an iterative algorithm of complementarity based on the richness of aquatic Coleoptera was applied. ‘Complementarity’ refers to the degree to which an area, or set of areas, contributes otherwise unrepresented attributes to a set of areas. This principle was used to maximize the number of species represented within a given number of areas.
  • 2. Only the species subsets whose taxonomic status, presence and distribution in the study area are well known were used. In total, 146 species were included, of which 12 are Iberian endemics and 32 are rare species (found only in one grid cell in the study area).
  • 3. The highest correlation was generally shown by species richness with endemic, rare and vulnerable species richness. Thus, basing conservation strategies on species richness appears to be an effective protocol.
  • 4. To preserve the highest degree of biodiversity in the aquatic ecosystems of the study area, the following need to be protected: (a) headwater streams in the north west of the province; (b) the uppermost reaches of the Segura River; (c) hypersaline and coastal ramblas; (d) rock pools and coastal ponds.
  • 5. The present network of Protected Natural Spaces in the study area does not include many of the aquatic ecosystems shown to have the highest biodiversity of beetles. However, the future European ‘Natura 2000’ network will protect the 10 grid cells of highest aquatic biodiverstity, or at least part of them.
Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
3.
  • 1. Biodiversity is probably at greater risk in freshwater systems than in other ecosystems. Although protected areas (PAs) play a vital role in the protection of biodiversity and are the mainstay of most conservation polices, the coverage of biodiversity by existing PA networks is often inadequate and few reserves are created that take into consideration freshwater biota.
  • 2. In this paper an attempt is made to address the performance of protected areas in the context of freshwater biodiversity conservation using data records for water beetles in a Mediterranean river basin.
  • 3. Although the present PAs in the study area cover a relatively high number of water beetle species, the distribution and extent of reserves is still inadequate or insufficient to protect freshwater biodiversity, especially species of conservation concern.
  • 4. Alternative area‐selection methods (hotspots and complementary) were more efficient than PAs for representing water beetles. Within these, complementarity was the most efficient approach, and was able to represent all species in a significantly lower area than the current PA network. On the other hand, the future Natura 2000 Network will result in a great increase in the total area of protected land as well as in the biodiversity represented.
  • 5. Unfortunately, the occurrence of a species within a protected area is not a guarantee of long‐term survival because the extent of PAs is often insufficient and disturbances occur outside park boundaries. Thus, whole‐catchment management and natural‐flow maintenance are indispensable strategies for freshwater biodiversity conservation.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号