首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HYDRUS 2D finite difference two-dimensional water balance model was experimentally tested for transient and steady state seepage flux, mound height, and piezometric water level from soil surface as a function of time and horizontal distance from the centre of the canal (half width = 45 cm) under different canal bed elevations (20, 0, −40, −80 and −120 cm denoted as experiments D1, D2, D3, D4 and D5, respectively) and constant water head of 5 cm in a sand box (200 cm × 170 cm × 150 cm) filled with Hisar loam soil. Differences of means between measured and predicted values of infiltration flux, seepage flux and mound height as tested by paired t test were not found significant (P = 0.05). Seepage flux and mound height increased with increasing canal bed elevation. Phreatic level depths were everywhere much shallower than the piezometric water level depths in experiments D1, D2 and D3. However, in experiments D4 and D5 both phreatic and piezometric levels were at similar depths. The seepage parameters and mound height increased, and water table depth decreased, linearly with increasing canal bed elevation. Lowering the canal bed to 120 cm below the soil surface reduced the seepage rate to that of lined canals. The projections in a large flow domain also revealed that lowering the canal to −2 and −4 m below soil surface stabilized the water table at 2.5 and 4.5 m below soil surface, respectively. The practical implications are that open drains should be used for irrigation in areas underlain with a brackish groundwater aquifer and gravity canals may be allowed only where groundwater aquifer is of good quality and sub-surface water withdrawal is practiced for irrigation.  相似文献   

2.
A study was carried out to determine the efficiencies of water use in irrigation in the Jordan Valley Project. The study aimed to evaluate, the overall or project efficiency (Ep) which includes: the irrigation system efficiency, being the combined conveyance and distribution efficiency (Es); and the field application efficiency (Ea). Evaluation of these efficiencies includes the comparison of open canals with surface irrigation versus pressurized pipes with sprinkler or drip irrigation systems. Data was collected from different sources to achieve the above mentioned purposes, beside the field experiments which were carried out specially for this study.It was found that the overall or project efficiency (Ep) for open surface canal with surface irrigation under citrus was 53%. While it was 42% under vegetables. Whereas Ep for pressurized pipe systems was 68%, and 70% for sprinkler and drip irrigation methods, respectively.The Es for an open canal, (King Abdullah Canal, KAC) was 65%. While it was 77% for pressurized pipe projects during 1989–1991. Concerning the Ea, it was found to be equal to 82% and 64%, for surface irrigation on citrus and vegetables, respectively. Whereas it was 88% for citrus under sprinkler, and 91% for vegetables under drip irrigation. These values for the field application efficiency are acceptable according to Finkle (1982). The low Es value for the canal is due, mainly, to high evaporation and seepage, unreported deliveries, and unavoidable measurement losses. Whereas, in pressurized pipe projects, it is due to the unreported deliveries, unavoidable measurement losses, and leakage.  相似文献   

3.
Laboratory flume test was conducted to investigate the effect of flowing water an soil-cement canal tiles. For this purpose, soil-cement tiles were constructed from different soils at various cement contents. A flume, 3 metre long and 100 mm wide, was lined with the tiles and the lined bed was subjected to flow velocities of around 2 m/s for a period of 7 days. The tiles made from coarse-textured soil (sandy loam and silt loam) aggregates of 5 mm and from fine textured soil (clay loam) aggregates of 2 mm size were found to be intact and smooth even when constructed at a cement contents lower than that needed to meet the durability requirements.Attempts were also made to measure seepage losses of soil-cement tile linings. A channel section of approximately 1 metre length with a side slope of 1:1 was constructed in the laboratory with the tiles and seepage losses measured by the ponding method were found to be in the range of 0.00123–0.00343 m3/m2/day.The results clearly suggest that soil-cement tiles (irrespective of type of soil) made with 2 mm or less size of soil aggregates are erosion resistant and due to very little or negligible rates of seepage losses, the soil-cement tile lining of irrigation canals is expected to be very promising especially in the areas where irrigation water is costly.  相似文献   

4.
【目的】探究渠道水深对渠床土壤入渗特性的影响及其变化规律。【方法】以河套灌区典型斗渠规模的渠道水深对渠床土壤入渗特性的影响为对象,采用水位下降静水法入渗试验,分析了渠道水深对累积入渗量、入渗率、渗漏强度的影响。【结果】(1)在同一渠道水深条件下,土壤累积入渗量随着渗漏用时的延长而增加;土壤入渗率和渠道渗漏强度均随渗漏用时逐渐减小并最终趋于稳定。(2)不同渠道水深条件下土壤累积入渗量、土壤入渗率和渠道渗漏强度均呈现出随水深的增加而增大的趋势。(3)在渠道水深作用下渠床土壤含水率动态分布受基质势梯度、土壤导水率及湿周的影响较大。【结论】渠道水深对渠床土壤入渗特性中的累积入渗量、入渗率、渗漏强度及渠床土壤含水率动态分布均有较大影响,且前三者均随水深的增加而呈现指数规律增大,并且在不同渠道水深的相近入渗特性下最优水深为70 cm。  相似文献   

5.
Summary The Lewis-Milne (LM) equation has been widely applied for design of border irrigation systems. This equation is based on the concept of mass conservation while the momentum balance is replaced by the assumption of a constant surface water depth. Although this constant water depth depends on the inflow rate, slope and roughness of the infiltrating surface, no explicit relation has been derived for its estimation. Assuming negligible border slope, the present study theoretically treats the constant depth in the LM equation by utilizing the simple dam-break wave solution along with boundary layer theory. The wave front is analyzed separately from the rest of the advancing water by considering both friction and infiltration effects on the momentum balance. The resulting equations in their general form are too complicated for closed-form solutions. Solutions are therefore given for specialized cases and the mean depth of flow is presented as a function of the initial water depth at the inlet, the surface roughness and the rate of infiltration. The solution is calibrated and tested using experimental data.Abbreviations a (t) advance length - c mean depth in LM equation - c f friction factor - c h Chezy's friction coefficient - g acceleration due to gravity - h(x, t) water depth - h 0 water depth at the upstream end - i() rate of infiltration - f(x, t) discharge - q0 constant inflow discharge - S f energy loss gradient or frictional slope - S0 bed slope - t time - u(x, t) mean velocity along the water depth - x distance - Y() cumulative infiltration - (t) distance separating two flow regions - infiltration opportunity time  相似文献   

6.
The equitable distribution of canal water is imperative to ensure social justice as well as crop productivity. In north-west India and Pakistan, water from the tertiary canal (watercourse) is distributed to the farmers through a rotational system of irrigation. In this system the duration of supply to each farmer is in proportion to his holding in the outlet (watercourse) command, without considering the seepage loss. The rate of seepage loss increases with increase in length of watercourse from head to tail. Thus, the farmers in the lower reaches get much less water per unit area than the farmers in the upper reaches. The farmers must be compensated for the seepage loss. Therefore, a model was developed to ensure equitable distribution of water to the farmers located on a watercourse in proportion to their land holdings giving due compensation for the seepage loss. The model is based on the assumption that soil throughout the length of flow is homogeneous and loss through evaporation is negligible. The model developed ensures an equitable distribution of water to the farmers according to their land holdings. A comparison of existing and revised time allocation reveals that the farmers located in the upper reaches were getting more time (up to 12.2 min per unit area), while the farmers located in the lower reaches have been getting less time (up to 28.1 min per unit area). The existing allocation of time of 0.75 h per unit area to all the farmers according to the old rules was revised to 0.546–1.219 h per unit area from head to tail. The conclusions drawn suggest that the strategy developed here should be adopted elsewhere in the existing system of irrigation for equitable distribution of canal water. Received: 21 December 1999  相似文献   

7.
针对引黄济津应急调水工程河北段的输水能力进行了研究。渠段的输水能力是指渠段所能通过的最大入流量,即渠段的首端断面所能通过的最大流量。根据引黄济津应急调水工程近4年的实测数据,构建了适于干河床水流推进过程渗漏损失的改进模型、小水深情况下的糙率加大模型,并采用均匀试验优选方法对水力参数进行了反演,利用非恒定流模型对引黄济津河北段渠系输水能力进行了计算。结果表明,建立的渗漏损失改进模型、小水深情况下的糙率加大模型是合理的,反演得到的参数是精确的;由于在水流推进与涨水阶段渠床的非稳定渗漏起了较大作用,所以各渠段的输水能力在非稳定输水阶段比稳定输水阶段稍大。输水能力的计算结果可以为引黄济津未来几年的输水规划与调度提供具体的指导。  相似文献   

8.
[目的]量水平板具有构造简单、不易淤积等优点,虽已建立流量与平板偏转角、上下游水深及板型等因素的关系式,但底坡对量水平板水力特性的影响还缺乏系统研究,有必要深入分析,以提高量水平板测流公式的适用范围.[方法]以北方灌区常见U形渠道为试验水槽,选择断面最佳收缩比0.439的U形渠道量水平板为试验对象.通过设置3种水槽底坡...  相似文献   

9.
The increased use of marginal quality water with drip irrigation requires sound fertigation practices that reconcile environmental concerns with viable crop production objectives. We conducted experiments to characterize dynamics and patterns of soil solution within wet bulb formed by drip irrigation. Time-domain reflectometry probes were used to monitor the distribution of potassium nitrate (KNO3) and water distribution from drippers discharging at constant flow rates of 2, 4 and 8 L h−1 in soil-filled containers. Considering results from different profiles, we observed greater solute storage near the dripper decreasing gradually towards the wetting front. About half of the applied KNO3 solution (48%) was stored in the first layer (0–0.10 m) for all experiments, 29% was stored in the next layer (0.10–0.20 m). Comparing different dripper flow rates, we observed higher solution storage for 4 L h−1, with 45, 53 and 47% of applied KNO3 solution accumulating in the first layer (0–0.10 m) for dripper flow rates of 2, 4 and 8 L h−1, respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of solution at more frequent intervals to reduce deep percolation losses of applied water and solutes.  相似文献   

10.
The low efficiency water control provided by sluice gates and weirs used in the flooded rice tillage system in Rio Grande do Sul, Brazil, have caused significant water losses. Such devices are utilized to control the water flow from the main to the secondary channels. The water flow through the gates is highly influenced by the water depth fluctuation in the main channel. The purpose of this work was to construct and evaluate a flow regulator to reduce flow variations in the secondary channels, resulting from water level fluctuation in the main channels. The prototype operates with a float that prevents the water head variation over the water passage orifices. The regulator flow control was compared to the sluice gate flow control. Both structures were installed at a lateral inlet, and the depth of water in the main channel ranged from 70 to 90 cm. The flows from the regulator and sluice gate were measured with “H” flumes. To relate the flow provided by the regulator to the water head over the water passage orifices, the regulator was submitted to six different water heads, ranging from 5 to 30 cm. The comparison between the structures showed that both presented variation in the controlled flow. However, the flow control provided by the automatic flow regulator was more effective than that provided by the sluice gate. The controlled flow variation was 5.5% for the automatic flow regulator, and 23.7% for the sluice gate. Regulator flow analysis for the different water heads showed that it can operate with flows ranging from 24 to 49 L s−1. Comparing the sluice gate to the automatic flow regulator, the latter is a more efficient flow control device, reducing the waste of water.  相似文献   

11.
在我国北方的季节性冻土地区,防渗衬砌渠道的冻胀破坏对输水工程的危害最大.针对内蒙古临河地区南边分干渠冻胀破坏问题,提出了在渠道混凝土衬砌下铺设聚氨酯保温板新材料的措施.通过进行现场保温防冻胀试验,分析了各种保温措施下渠道基土的地温、冻深、含水率和冻胀量等影响冻胀变化因素的规律及其特征,总结了不同方案下的保温防冻胀效果,得出了适合该地区混凝土衬砌渠道中聚氨酯保温材料的防冻胀破坏方案:渠道阳坡上部使用3 cm厚的聚氨酯保温板,阳坡下部使用4 cm厚的聚氨酯保温板,阴坡上部使用4 cm厚的聚氨酯保温板,阴坡下部使用5 cm厚的聚氨酯保温板就可以保证混凝土衬砌体不发生冻胀破坏,同时为后续刚性衬砌渠道中采用聚氨酯保温材料防冻胀提供了技术支持.  相似文献   

12.
In places where rice is grown in paddy fields with permanent bunds, considerable quantities of water are lost through lateral seepage of water into the bund and from there vertically to the groundwater. Lateral percolation losses increase with increases in field water depth, bund width, aquifer thickness and depth to groundwater. These losses do not occur in systems where the bunds are reformed every year. The paper discusses the areas of research required to quantify the magnitude of these `losses' at a scheme level and suggests management interventions to improve the efficiency of water use.  相似文献   

13.
Recharge to the aquifer through seepage from irrigation canals is often quoted as one of the main causes for waterlogging in Pakistan. In the design of drainage systems to control this waterlogging, rules-of-thumb are often used to quantify the seepage from canals. This paper presents the option to use a groundwater model for a more detailed assessment. Groundwater models may assist in evaluating the effect of recharge reducing measures such as interceptor drains along irrigation canals and lining. These measures are commonly aimed at reducing the drainage requirement of adjacent agricultural lands. In this paper an example is given of the application of a numerical groundwater model, aimed at assessing the effect of interceptor drainage and canal lining in the Fordwah Eastern Sadiqia project, being a typical and well-monitored location in Pakistan. The paper also presents references to other conditions. The model was used to obtain a better insight in the key hydraulic parameters, such as the infiltration resistance of the bed and slopes of irrigation canals, the drain entry resistance of interceptor drains and the hydraulic conductivity of soil layers. The model was applied to assess the effectiveness and efficiency of interceptor drains under various conditions. The results of the study show that the net percentage of intercepted seepage is too low to have a significant effect on the drainage requirement of the adjacent agricultural lands. Besides, the operation of the system, with pumping required, is often an added headache for the institution responsible for operation of the system. The marginal effect of interceptor drains and lining on the drainage requirement of adjacent agricultural land does not always justify the large investments involved. It can be concluded that:
•  Use of rules-of-thumb to estimate components of the water balance of irrigation systems in designing drainage can be very misleading;
•  Interceptor drainage may cause induced seepage from irrigation canals, which is often an order of magnitude more than the net intercepted seepage;
•  Interceptor drains and canal lining do not significantly reduce the drainage requirements, or in other words, cannot prevent the need for the installation of a drainage system;
•  A numerical model can aid to evaluate proposed measures and strategies to alleviate water losses and drainage problems.
Relevant hydrological concepts and modelling parameters with respect to leakage from irrigation canals and interception by interceptor drains are presented in a separate paper.  相似文献   

14.
Water requirements of olive orchards are difficult to calculate, since they are influenced by heterogeneous factors such as age, planting density and irrigation systems. Here we propose a model of olive water requirements, capable of separately calculating transpiration (E p), intercepted rainfall evaporation (E pd) and soil evaporation (E s) from the wet and dry fraction of the soil surface under localized irrigation. The model accounts for the effects of canopy dimension on E p and of the wetted soil surface fraction on E s. The model was tested against actual measurements of olive evapotranspiration (ET) obtained by the eddy covariance technique in a developing olive orchard during 3 years. The predicted ET and crop coefficients showed good agreement with the measured data. The model was then used to simulate the average water requirements of two mature orchards using 20-year meteorological datasets of Cordoba (Spain) and Fresno (CA, USA). Average annual ET of a 300 trees ha−1 orchard at Cordoba was 1,025 mm, while the same orchard at Fresno had an average ET of 927 mm. Transpiration losses were 602 mm at Cordoba and 612 mm at Fresno. Evaporation from the soil can have a large effect on olive ET; thus, olive crop coefficients (K c) are very sensitive to the rainfall regime.  相似文献   

15.
The introduction of polysaccharide producing benthic algae and bacteria could provide a low cost technique for seepage control in irrigation channels. The ability of algae and bacteria to produce polysaccharides proved to be successful in reducing the hydraulic conductivity of irrigation channel soil. Hydraulic conductivity was reduced to less than 22% of its original value within a month of inoculating soil columns with algae. Chlorophyll and polysaccharide concentrations in irrigation channel soil were measured in order to assess the growth of algae and extent of polysaccharide production, and their correlation with hydraulic conductivity of channel soil. Increases in polysaccharide occurred in the top layer (0–5 mm) of the soil column. The reduction of hydraulic conductivity was highly correlated with the amount of polysaccharides produced (r 2 = 0.92). Hydraulic conductivity decreased with increasing algal and bacterial numbers. The first few millimetres of the soil core where microbial activity was concentrated, seemed effective in controlling seepage. Incorporation of extra nitrate and phosphate into algal medium did not increase the production of polysaccharides by algae in channel soil. The effect of salinity and turbidity of irrigation channel water on channel seepage was studied by measuring the effects on hydraulic conductivity of channel soils. When the electrical conductivity (EC) of the water increased above a threshold value, the hydraulic conductivity increased because of the flocculating effects on clay particles in channel soils. A relationship between sodium adsorption ratio (SAR) and EC of the channel water was established which indicated 15% increase in channel seepage due to increases in salinity. Increasing the turbidity of irrigation water (by increasing the concentration of dispersed clay) resulted in lowering the hydraulic conductivity of the channel soil due to the sealing of soil pores by dispersed clay particles. When the turbidity of the water was 10 g clay l–1, the hydraulic conductivity was reduced by 100%. An increase in clay concentration above 1 g l–1 resulted in significant reduction in hydraulic conductivity. Soil bowl experiments indicated that clay sealing with a coating of hydrophobic polymer on the surface could also effectively prevent seepage of saline water.  相似文献   

16.
The performance of different indicators of plant water status as a tool for irrigation management was evaluated in mature field grown ‘Golden Delicious’ apple trees during the late summer of 1998. Control (C) and stress (S) treatments were studied. In the C treatment trees were irrigated daily at 100% ETc whereas in the S treatment water was withheld during 31 days (DOY’s 236–266). Predawn water potential (Ψpd) and midday stem water potential (Ψstem) were measured several times a week during the experimental period. Three daily measurements of stomatal conductance (gs) and stem water potential were made during five consecutive days in mid-September. Trunk diameter changes (TDC) were recorded by LVDT sensors, and from these measurements, maximum daily shrinkage (MDS), daily growth (DG), and cumulative growth (CG) were calculated. Midday Ψstem showed the best ratio between the response to moderate water stress and tree variability (“signal/noise” ratio) among the indicators studied here, followed closely by Ψpd. On the other hand, the poorest water status indicator was gs. Due to the low trunk growth rate of the trees, and its high variability, DG and CG were not adequate indicators. MDS showed a lower sensitivity to water stress and a higher variability (CV = 0.19) than midday Ψstem (CV = 0.08) and Ψpd (CV = 0.10). However, MDS correlated well with ET0 and with midday Ψstem (R 2 = 0.79) thus, making this parameter an interesting and promising tool for irrigation management in apple orchards. More research needs to be done in order to define reference values for MDS and plant water potential indicators, in relation to evaporative conditions and in different phenological periods, and to quantify the relationship between water status indicators values and apple tree yield and fruit quality.  相似文献   

17.
To evaluate the effectiveness of various types of linings in reducing the seepage losses from field channels, 10 conventional and 12 low cost test sections were constructed. The conventional test sections included six rectangular brick masonry sections and four trapezoidal concrete sections with varying thickness of walls and bed lining materials. The low cost sections consisted of six rectangular brick masonry sections and six trapezoidal sections with brick masonry, pre-cast concrete slab and tile lining having different thickness of wall and bed linings. In some low cost sections lining was not provided in the bed. Water loss rates were measured before construction, immediately after construction and 24 years after construction. Higher seepage loss rates were measured in the cement–concrete conventional test sections than in the conventional brick masonry sections with plaster on the inside walls. Water loss rate measurements in concrete sections showed that quality control was more critical than the thickness and richness of the concrete mix. Economic analyses showed that low cost linings were a better investment than the conventional linings. Low cost lining with 11 cm thick brick masonry in vertical walls, or 2:1 sloped walls, plastered on the inside, without lining in the bed, is recommended. Lining walls, with 2:1 slope, using fired tile or pre cast concrete slabs were also good investments when the joints were plastered.  相似文献   

18.
Large areas of vineyards have been established in recent years in arid region of northwest China, despite limited water resources. Water to support these vineyards is mainly supplied by irrigation. Accurate estimation of vineyard evapotranspiration (ET) can provide a scientific basis for developing irrigation management. Transpiration and soil evaporation, as two main components of ET, were measured separately in a vineyard in this region by heat balance sap flow system and micro-lysimeters during the growing season of 2009. Diurnal and seasonal dynamics of sap flow and its environmental controls were analyzed. Daily sap flow rate (SRl) increased linearly with solar radiation (Rs), but showed an exponential increase to its maximum curve as a function of vapor pressure deficit (VPD). Residuals of the two regressions both depended on volumetric soil water content to a depth of 1.0 m (VWC). VWC also significantly influenced SRl. The relationship of them could be expressed by a piecewise regression with the turnover point of VWC = 0.188 cm3 cm−3, which was ∼60% of the field capacity. Conversely, soil evaporation (Es) increased exponentially with VWC. Thus, we recommended keeping VWC in such vineyards slightly above ∼60% of the field capacity to maintain transpiration while reducing soil evaporation. Vineyard transpiration (Ts) was scaled from sap flow by using leaf area (Al) as it explained 60% of the spatial variability of sap flow. Vine transpiration was 202.0 mm during the period from April 28 to October 5; while that of Es was 181.0 mm. The sum of these two components was very close to ET estimated by the Bowen ratio energy balance method (386.9 mm), demonstrating the applicability of sap flow for measuring grape water use in this region.  相似文献   

19.
The expansion of permanent trickle irrigation systems in Sao Paulo (Brazil) citrus has changed the focus of irrigation scheduling from determining irrigation timing to quantifying irrigation amounts. The water requirements of citrus orchards are difficult to estimate, since they are influenced by heterogeneous factors such as age, planting density and irrigation system. In this study, we estimated the water requirements of young ‘Tahiti’ lime orchards, considering the independent contributions from soil evaporation and crop transpiration by splitting the crop coefficient (Kc = ETc/ETo) into two separate coefficients; Ke, a soil evaporation coefficient and Kcb, a crop transpiration coefficient. Hence, the water requirement in young ‘Tahiti’ lime (ETy) is ETy = (Ke + Kcb) · ETo, where ETo is the reference crop evapotranspiration. Mature tree water requirement (ETm) is ETm = Kcb · ETo, assuming no soil water evaporation. Two lysimeters were used; one was 1.6 m in diameter and 0.7 m deep, and the other was 2.7 m in diameter and 0.8-m deep. The first one was used to calculate evaporation and the second one was used for transpiration. ETo was estimated by the Penman–Monteith method (FAO-56). The measurements were conducted during a period between August 2002 and April 2005 in Piracicaba, Sao Paulo state, Brazil. The lysimeters were installed at the center of a 1.0-ha plot planted with ‘Tahiti’ lime trees grafted on ‘Swingle’ citrumelo rootstock. The trees were 1-year old at planting, spaced 7 × 4 m, and were irrigated by a drip irrigation system. During the study period, Kc varied between 0.6 and 1.22, and Kcb varied between 0.4 and 1.0. The results suggested that for young lime trees, the volume of water per tree calculated by Ke + Kcb is about 80% higher than the volume calculated using Kc. For mature trees, the volume of water per tree calculated using just Kcb can be 10% less than using Kc. The independent influence of soil evaporation and transpiration is important to better understand the water consumption of young lime trees during growth compared to mature lime trees.  相似文献   

20.
The aim of this study was to assess the magnitude of evaporation loss from the agricultural water reservoirs (AWRs) for irrigation at a regional scale and to analyze its impact on water storage efficiency. To this end, we identified the extant AWRs for irrigation in the Segura River Basin (SRB) in southeastern Spain, and calculated the water loss from each AWR per month and year. In order to accomplish this, we determined the monthly and yearly values of the pan coefficient, Kp, taking into account the geometric dimensions (area and depth) of the AWRs and local climate conditions through a function of air vapour pressure deficit (VPD). AWR areas were identified by interpreting aerial images, while climate conditions were assessed using daily meteorological data obtained from 74 automated agro-meteorological stations located in irrigated areas. Regional evaporation losses were estimated using aggregation GIS techniques. A total of 14,145 AWRs covering 4901 ha were identified, which represents 0.26 and 1.81% of the total area of SRB and the irrigated land, respectively. Results indicated that annual water loss at a basin scale reaches 58.5 × 106 m3, which corresponds to 1.404 m of water depth over the flooded area and to 8.3% of irrigation water use in the basin. This quantity is higher than the industrial demand and similar to the environmental demand, and is equivalent to 27% of the domestic water use in a region with approximately two million inhabitants. The method used, based on annual Kp, appears the most straightforward to assess regional evaporative losses from AWRs, and can be extended to other regions and climates, provided that the VPD-dependent function that gives the pan coefficient is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号