首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Thirteen horses of Thoroughbred or Standardbred breeding were used to study the effect of dietary fish oil supplementation on blood lipid characteristics. Horses were assigned to either fish oil (n = 7) or corn oil (n = 6) treatment groups for 63 d. The fish oil contained 10.8% eicosapentaenoic acid (EPA) and 8% docosahexaenoic acid (DHA). Each horse received timothy hay and a mixed-grain concentrate at rates necessary to maintain BW. Oil (corn or fish) was top-dressed on the concentrate daily at a rate of 324 mg/ kg of BW. The n-6:n-3 ratio was approximately 3.6:1 for horses receiving the corn oil diet and 1.4:1 for horses receiving the fish oil diet. Horses were exercised 5 d/wk during the study. Before supplementation, there was no difference in the concentrations of any serum fatty acids between the 2 treatment groups. The mean basal concentrations of EPA and DHA on d 0 were 0.04 and 0.01 mg/mL, respectively. After 63 d, horses receiving the fish oil treatment, but not those receiving the corn oil treatment, had increased concentrations of EPA and DHA (P <0.05). Fish oil supplementation for 63 d also increased the concentrations of C22:0, C22:1, and C22:5 fatty acids (P <0.05). Overall, horses receiving fish oil had a decreased concentration of n-6 fatty acids (P <0.05) and a greater concentration of n-3 fatty acids (P <0.01), resulting in a lower n-6:n-3 fatty acid ratio after 63 d (P <0.05). Serum cholesterol concentrations increased (P <0.05) during the supplementation period in horses receiving the corn oil but not in horses receiving the fish oil. Compared with horses receiving corn oil, horses receiving fish oil had lower serum triglycerides at d 63 (P <0.05). These results demonstrate that 63 d of fish oil supplementation at 324 mg/kg of BW was sufficient to alter the fatty acid profile and blood lipid properties of horses receiving regular exercise.  相似文献   

2.
In a replicated 4 × 4 Latin square experiment conducted in summer, eight mature Thoroughbred horses received two diets, control and fat-supplemented, and were exercised at two fitness levels designed to increase daily digestible energy (DE) requirements to approximately 150% (fitness level I) and 200% (fitness level II) of maintenance. In a second experiment during the winter, horses received the two diets in a switchback design and exercised at fitness level II. After 3 wk adaptation to treatments, feed and fecal samples were collected and horses galloped a standardized exercise test (SET) designed to increase the heart rate above 185 bpm for 1200 m. Vital signs were monitored and blood samples were obtained. Feed intake increased as fitness level increased (P < .05). Horses on the fat-supplemented diet required less feed (P < .05) to meet the energy requirements at a given fitness level. Daily DE intake was higher (P < .05) for the horses exercised at fitness level II to meet the increased metabolic demands. Heart rate, respiration rate and rectal temperature all increased (P < .05) with exercise. No treatment effects were found for heart rate (P >. 10) or rectal temperature (P > .30). Horses exercised in the winter had lower (P < .05) respiration rates, indicative of less problems dissipating excess body heat. Plasma aldosterone concentrations increased (P < .05) with exercise, corresponding to an increase in plasma K concentrations. Horses exercised in the summer exhibited higher (P < .05) plasma aldosterone concentrations than horses worked in the winter. Plasma CI and Na concentrations did not change (P > .30) with any treatment or exercise, indicating that the horses were not sufficiently stressed to induce any significant dehydration.  相似文献   

3.
The hypothesis that short-duration exercise may ameliorate the decrease in bone mass observed with confinement was investigated with 18 quarter horses (nine colts and nine fillies) weaned at 4 mo of age and placed into box stalls. After a 5-wk adjustment period, individuals were grouped by age and weight, and then divided randomly into three treatment groups: 1) group housed; 2) confined with no exercise; and 3) confined with exercise. The confined and exercised groups were housed in 3.7 m x 3.7 m box stalls for the 56-d duration of the trial. The exercised group was sprinted 82 m/d, 5 d/wk, in a fenced grass alleyway. The weanlings were led down an alleyway, turned loose in a small pen, and then released and allowed to run back down the alley. The group horses were housed together in a 992-m2 drylot with free access to exercise. On d 0, 28, and 56, dorsopalmar and lateromedial radiographs of the left third metacarpal bone were taken to estimate changes in bone mineral content and cortical widths. Mean values of medial, lateral, and total radiographic bone aluminum equivalence increased over time (P < 0.05), whereas dorsal and palmar radiographic bone aluminum equivalence did not change significantly. Dorsal, medial, and total radiographic bone aluminum equivalence tended (P = 0.09) to differ by a treatment x day interaction, with values increasing over time only in the exercised group. Normalized medial and total radiographic bone aluminum equivalence tended (P < 0.1) to differ (P < 0.01) with treatment, with exercised horses having greater bone aluminum equivalence than confined horses. Dorsopalmar cortical width in exercised horses was greater than on d 56 (treatment x day; P = 0.07). The dorsopalmar medullary cavity decreased in exercised vs. group-housed horses (P = 0.027), whereas dorsal and medial cortical width tended to increase only in the exercised horses (treatment x day; P < 0.01). This study indicated that a short-duration exercise protocol might be effective in improving bone mass and therefore skeletal strength in horses.  相似文献   

4.
Effects of longitudinal exercise training and acute intensive exercise (simulated race test) on immune function have not been reported in horses. Clenbuterol, a beta2-adrenergic agonist, is used to manage inflammatory airway disease in horses. This study investigated the interaction of 8 wk of exercise training with or without 12 wk of clenbuterol administration in horses. Twenty-three untrained standardbred mares (10 +/- 3 yr, Mean +/- SE) were used and divided into four experimental groups. Horses given clenbuterol plus exercise (CLENEX; n = 6) and clenbuterol alone (CLEN; n = 6) received 2.4 microg/kg BW of clenbuterol twice daily (in an average volume of 20 mL) on a schedule of 5 d on and 2 d off for 12 wk. The CLENEX group was also aerobically trained 3 d/wk. Mares given exercise alone (EX; n = 5) were aerobically trained for 3 d/wk, and the control group (CON; n = 6) remained sedentary. Both EX and CON horses were administered similar volumes (approximately 20 mL) of molasses twice daily. A simulated race test (SRT) resulted in an elevation in lymphocyte number postexercise (P < 0.05). There was no significant difference after acute exercise in either monocyte or granulocyte number. Acute exercise resulted in a decrease (P < 0.05) in the percentage of CD4+ and an increase (P < 0.05) in the percentage of CD8+ cells. The SRT resulted in a decreased lymphoproliferative response to pokeweed mitogen (P < 0.05). A SRT had no effect on antibody production in response to equine influenza vaccine. The EX group demonstrated greater cortisol concentrations at rest and at all other time points postexercise after completing the training regimen compared with CLENEX horses (P < 0.05). Preexercise (SRT) peripheral blood monocyte number was lower in CLENEX horses than in other treatment groups (P < 0.05). Clenbuterol and exercise training did not significantly affect post-SRT changes in leukocyte numbers. Exercise training resulted in a decrease (P < 0.05) in the percentage of CD8+ cells post-SRT compared with other groups, but the percentage of CD4+ cells was not altered by either clenbuterol or exercise conditioning. Lymphocyte proliferative response was not affected by clenbuterol or exercise treatment. Horses demonstrated responses to bouts of acute exercise as noted with other species, namely humans and rodents.  相似文献   

5.
Because exercise fatigue has been associated with the accumulation of lactic acid, factors that influence lactate metabolism during exercise can potentially enhance performance. The objective of this study was to examine the effects of supplemental betaine on eight mature Thoroughbred horses before and after 8 wk of conditioning. The effects of betaine were tested in two cross-over design experiments, allowing each horse to receive both the control and betaine treatments at each fitness level. Ingestion of 80 mg of betaine/kg of BW for 14 d before exercise testing did not alter plasma lactate, glucose, free fatty acids (FFA), or triglyceride concentrations during exercise in the untrained or trained horses. A time x treatment interaction (P < .05) was observed for plasma lactate in untrained horses during recovery from exercise, and plasma lactate concentrations were lower (P < .05) at 60 min after exercise when untrained horses received betaine. Plasma FFA concentrations were lower (P < .05) before exercise and at 720 min after exercise when untrained horses received betaine. These data indicate that betaine may influence lactate metabolism following exercise in untrained horses; however, betaine does not seem beneficial for trained horses.  相似文献   

6.
OBJECTIVE: To determine the effects of 3 rations (low grain, fat, high grain) on plasma creatine kinase (CK) activity and lactate concentration in Thoroughbred horses with recurrent exertional rhabdomyolysis (RER). ANIMALS: 5 Thoroughbreds with RER and 3 healthy Thoroughbreds (control horses). PROCEDURES: Rations were formulated to meet (low-grain and fat rations) or exceed (high-grain ration) daily energy requirements. Each ration was fed to horses in a crossover design for 3 weeks. Horses were exercised on a treadmill Monday through Friday; maximum speed on Monday and Friday was 11 m/s (6% slope), on Tuesday and Thursday was 9 m/s, and on Wednesday was 4.5 m/s. Plasma CK activity and lactate concentration were determined before and after exercise. RESULTS: Horses with RER fed the high-grain ration had significantly greater CK activity and change in CK activity 4 hours after exercise, compared with those fed the low-grain ration. Horses with RER exercised at the trot or canter had significantly greater increases in CK activity, compared with those exercised at the gallop. Plasma lactate concentrations after exercise were similar in control and affected horses. Lactate concentration and CK activity were not correlated in horses with RER. CONCLUSIONS AND CLINICAL RELEVANCE: Rations high in grain and formulated to exceed daily energy requirements may increase episodes of rhabdomyolysis in thoroughbred horses susceptible to RER.  相似文献   

7.
Eight mature (12 +/- 2 yr; MAT) and 5 older (22 +/- 2 yr; OLD) Standardbred mares were used to test the hypothesis that aging and exercise training would alter apoptosis in white blood cells and antioxidant status. The horses were housed indoors overnight (16 h/d) in 3 m x 3 m stalls and were turned out in a drylot during the day. They were fed a diet consisting of total mixed ration, hay cubes fed ad libitum or an equine senior diet plus grass hay. Horses were trained for 20 to 30 min/d, 3 to 5 d/wk for 8 wk at a submaximal work intensity between 60 to 70% of maximal heart rate. A graded exercise test (GXT; stepwise test until exhaustion) was performed before (GXT1) and after (GXT2) the 8 wk of training. During the GXT, blood samples and heart rate were taken at rest, 6 m/s, fatigue, and at 5 and 60 min postfatigue. Fatigue plasma lactate concentration was greater in MAT (19.3 +/- 1.5 at 10 m/s) compared with the OLD (10.9 +/- 1.2 mmol/L at 9 m/s; P = 0.008) horses. There was no effect of age or training on plasma lipid hydroperoxide (LPO) concentration. However, there was a positive correlation between LPO and plasma lactate concentration (r = 0.27, P = 0.006) during acute exercise. There was a greater concentration of total glutathione after GXT1 than after GXT2 (111.8 +/- 5.0 vs. 98.6 +/- 3.4 microM, respectively; P = 0.0002) for both age groups. Apoptosis was less (P = 0.002) in white blood cells of the MAT vs. the OLD group. These results demonstrate that older horses are under similar amounts of oxidative stress, measured by LPO, and have similar levels of glutathione in their systems compared with mature horses. The observation that more glutathione was needed during GXT1 for both groups of horses indicates that training helps horses adapt their system for the intense post-training exercise tests. The greater level of white blood cell apoptosis also indicates that older horses may be immune-compromised during exercise. However, research still needs to be performed regarding dietary supplementation in the aged horse.  相似文献   

8.
Reliable physiological markers for performance evaluation in sport horses are missing. To determine the diagnostic value of plasma ACTH and cortisol measurements in the warmblood horse, 10 initially 3-yr-old geldings of the Hannovarian breed were either exposed to a training schedule or served as controls. During experimental Phase 1, horses were group-housed, and half of the horses were trained for 20 wk on a high-speed treadmill. During Phase 2, groups were switched and one group was trained for 10 wk as during Phase 1, whereas the control group was confined to boxes. During Phase 3 horses were initially schooled for riding. Thereafter, all horses were regularly schooled for dressage and jumping, and half of the horses received an additional endurance training for 24 wk. During all phases horses were exposed at regular intervals to various standardized treadmill exercise tests. During and after the tests frequent blood samples were taken from an indwelling jugular catheter for determination of ACTH and cortisol. Treadmill exercise increased both hormones. Maximum ACTH concentrations were recorded at the end of exercise, and maximum cortisol levels were recorded 20 to 30 min later. Except for one test there were no differences in ACTH levels between trained horses and controls. There was no significant effect of training on the cortisol response (net increase) to treadmill exercise in any of the tests during Phase 1. During Phase 2 higher cortisol responses were recorded in controls than in trained horses (P < .05) after 10 wk of training (controls confined to boxes). During Phase 3 plasma cortisol responses were also higher in controls than in trained horses (P < .05 after 6, 18, and 24, P < or = .07 after 12 wk of training) when the inclination of the treadmill was 5%, but not at 3%. There was no overlap in net cortisol responses at 30 min between trained and untrained horses. An ACTH application after 24 wk of training resulted in higher cortisol responses in controls than in trained horses (P < or = .05), without any overlap between the groups at 30 min after ACTH. Plasma cortisol responses to either treadmill exercise or ACTH injection may be a reliable physiological marker for performance evaluation. Prerequisites are sufficient differences in training status and sufficient intensity of exercise test conditions.  相似文献   

9.
Eleven weanling Quarter Horses were separated into two treatment groups, EX = exercise (n=5) and NEX = non-exercise (n=5). At 150 days-of-age, EX horses were started on a 120-day exercise conditioning program. Horses were exercised over a sandy track using a mechanical walker at 3 m/second for from 3.4 to 34.0 minutes/day, 5 days per week; they travelled in opposite directions on alternate days. Horses were weighed and measured for height at the withers at the beginning and end of the study. Homes were euthanized at approximately 270 days-of-age. Rump fat thickness was measured, and heart, lung and diaphragm muscles were removed, dried to constant weight and expressed as percent of body weight or in ratio to height at the withers.  相似文献   

10.
Little information has been published concerning the effects of endophyte-infected tall fescue consumption on performance of young growing horses. Therefore, this study evaluated exercise performance and growth by yearlings fed endophyte-infected fescue. Twelve Quarter Horse yearlings (12-16 months of age) were blocked by age and sex and randomly assigned to one of three groups. Group I received native prairie hay (P), Group II received endophyte-free fescue hay (EF) and, Group III received endophyte infected fescue hay (EI). Rectal temperatures were monitored daily and growth parameters (weight, hip and wither heights, and body fat) were measured at the start of the study (d 0) and every 2 weeks throughout the 106 d study. Additionally, blood samples were collected on d 0 and every 28 d for the duration of the study to monitor blood concentrations of calcium, phosphorus, prolactin (PRL), thyroxine (T4), and triiodothyronine (T3). Horses were exercised twice a week for 10-30 min. Respiration, heart rate, and rectal temperature were measured at the start and 5, 30, and 60 min postexercise. Growth parameters and daily rectal temperatures were not different (P >.05) among grdups. No differences (P >.05) occurred among groups in concentrations of serum calcium, phosphorus, PRL, T3, and T4. Respiration rates were lower (P <.05) at 30 and 60 rain postexercise for horses consuming fescue than for horses consuming prairie hay. Postexercise heart rates and rectal temperatures showed no difference (P <.05) among groups. These data suggest that young growing horses being exercised can utilize endophyte-infected fescue efficiently on a short-term basis.  相似文献   

11.
Effect of controlled exercise on libido in 2-yr-old stallions   总被引:1,自引:0,他引:1  
Eight sexually inexperienced, 2-yr-old Morgan stallions were used in a consecutive two-phase design with two groups of four stallions each. Each phase lasted 16 wk, with semen collections every 14 d. Libido scores were assigned to stallions during each semen collection. Scores ranged from zero to four, with zero indicating minimum and four representing maximum libido. In Phase 1, four stallions received daily forced exercise for 16 wk, and the remaining four stallions were confined to box stalls. In Phase 2, the previously exercised stallions were confined to box stalls, and the non-exercised stallions of Phase 1 received daily forced exercise. No week X treatment effect (P greater than .05) was found in Phase 1. Exercised stallions, however, tended to have lower libido values than non-exercised stallions from wk 10 through wk 16. A week X treatment effect (P less than .01) was found in Phase 2. Libido scores were lower (P less than .05) over time among exercised stallions, whereas scores of non-exercised stallions tended to remain stable or rise slightly over time. Mean libido scores for exercised and non-exercised stallions were different (P less than .05) at the end of Phase 1 (2.06 +/- .37 and 3.5 +/- .37, respectively). By wk 26, mean libido scores were similar (exercised: 2.62 +/- .34; non-exercised: 2.52 +/- .34). However, by wk 32, libido values for exercised stallions were lower (P less than .05) than non-exercised stallions (1.87 +/- .34 and 2.81 +/- .34, respectively). In general, mean libido scores of the non-exercised group were higher than exercised stallions after 12 wk of forced daily exercise.  相似文献   

12.
Twelve Quarter Horses, 18 to 24 mo of age and having an average body weight of 460+/-12 kg, were randomly assigned to one of two exercise treatments (control and exercise) to study the effect of initiation of exercise training in young horses on vitamin K status. The control treatment consisted of hand-walking the horses 7 min/d and 5 d/wk for 180 d. Exercise consisted of the following treadmill exercise regimen: 2 min at 4.5 to 5.4 m/s, 3 min at 13.4 to 14.3 m/s, and 2 min at 4.5 to 5.4 m/s on 5 d/wk for 180 d. Both groups were allowed free access to brome grass hay (273 mg of phylloquinone/100 g) individually. Additionally, the exercise group was fed .45 kg of a grain-mix concentrate (40 mg of phylloquinone/100 g) on the days they were exercised. Jugular venous blood samples were collected at d 0, 30, 60, 90, 120, 150, and 180. Blood samples were analyzed for total serum osteocalcin and vitamin K status via the hydroxyapatite binding capacity of serum osteocalcin calculated as follows: Hydroxyapatite binding capacity of serum osteocalcin = [(total serum osteocalcin - serum osteocalcin following extraction of serum with hydroxyapatite)/total serum osteocalcin] x 100. All horses were killed with an overdose of sodium pentobarbital on d 180. Computed tomographic osteoabsorptiometry was used to measure relative bone density distribution on the surface of the distal radial carpal bone, proximal third carpal bone, and the distal third metacarpal condyle. Relative bone density distribution was measured in Hounsfield units and categorized as low-, medium-, and high-density bone corresponding to 800 to 1,199, 1,200 to 1,299, and 1,300 to 3,000 Hounsfield units, respectively. Carpal and metacarpophalangeal joints were assigned a score of 0 (normal) to 3 (severe) that reflected the presence and severity of joint lesions. Hydroxyapatite binding capacity of serum osteocalcin and serum osteocalcin were unchanged over the 180-d period in both groups. Exercised horses had a higher percentage of high density bone (P < .01) and a lower percentage of low density bone (P < .01) on the surface of the third metacarpal condyle and a higher cumulative gross lesion score (P < .01) in the metacarpophalangeal joint than controls. There were no differences between treatments in relative bone density distribution in the carpal bones, or cumulative gross lesion score of the carpal joints. No significant correlation was present between the serum measures, osteocalcin and hydroxyapatite binding capacity of serum osteocalcin, and the bone measures, relative bone density distribution and joint gross lesion score.  相似文献   

13.
The objective of the study was to evaluate the effect of supplementary AA on the ability to support muscle mass in aging horses. Sixteen horses of light horse type were used in a 2 x 2 factorial arrangement of treatments with two age groups [< or = 10 yr (average = 9.1 +/- 0.29 yr) and > or = 20 yr (average = 22.4 +/- 0.87 yr)] and two diet groups [no supplementation (N) or supplementary lysine and threonine (S; 20.0 and 15 g/d, respectively)]. Horses were fed the diets for 14 wk and received regular light exercise throughout the study. Body weight, BCS, and venous blood samples were taken every 2 wk. Plasma was analyzed for total protein, albumin, creatinine, urea N (PUN), and an AA profile, including 3-methyl histidine (3MH) and sulfur AA. Photographs of the horses taken at the start and at the end of the experiment were used to assign a subjective muscle mass score from 1 to 5 (1 = lowest to 5 = highest). There was no difference in BW caused by diet; however, the S-group horses tended (P = 0.064) to gain more weight (6.91 +/- 2.3 kg), and in fact, the N-group horses lost weight (- 11.76 +/- 5.2 kg) during the experiment. Repeated measures analysis revealed that BCS was lower for the aged vs. the young horses (P = 0.001) as well as for the S- vs. the N-group horses (P = 0.026). Subjective muscle mass scores were not different at the start of the experiment but were greater (P = 0.047) for the S-group horses (3.77 +/- 0.13) at the end of the experiment compared with the N-group horses (3.28 +/- 0.14). Plasma creatinine was greater (P = 0.032), and PUN was lower (P = 0.027), for S-group horses compared with N-group horses. Initial 3MH concentrations were not different; however, at the end of the experiment, 3MH was lower for the S-group horses (P = 0.016) compared with the N-group horses. Plasma lysine and threonine concentrations were greater for S-group horses at the end of the experiment than for N-group horses (P = 0.023 and 0.009, respectively). Both 3MH and PUN concentrations were negatively correlated to lysine (R2 = 0.57 and 0.65, respectively) and threonine intake (R2 = 0.56 and 0.60, respectively) at the end of the study. These data suggest that horses receiving supplementary AA were able to maintain muscle mass better than those without supplementation, regardless of age, as evidenced by the improvement in muscle mass scores, lower BCS with no difference in BW, greater creatinine, and lower 3MH and PUN concentrations in the S-group horses.  相似文献   

14.
OBJECTIVE: To determine the relationship between plasma beta-endorphin (EN) concentrations and exercise intensity and duration in horses. ANIMALS: 8 mares with a mean age of 6 years (range, 3 to 13 years) and mean body weight of 450 kg. PROCEDURE: Horses were exercised for 20 minutes at 60% of maximal oxygen consumption (VO2max) and to fatigue at 95% V02max. Plasma EN concentrations were determined before exercise, after a 10-minute warmup period, after 5, 10, 15, and 20 minutes at 60% VO2max or at the point of fatigue (95% VO2max), and at regular intervals after exercise. Glucose concentrations were determined at the same times EN concentrations were measured. Plasma lactate concentration was measured 5 minutes after exercise. RESULTS: Maximum EN values were recorded 0 to 45 minutes after horses completed each test. Significant time and intensity effects on EN concentrations were detected. Concentrations were significantly higher following exercise at 95% VO2max, compared with those after 20 minutes of exercise at 60% VO2max (605.2 +/- 140.6 vs 312.3 +/- 53.1 pg/ml). Plasma EN concentration was not related to lactate concentration and was significantly but weakly correlated with glucose concentration for exercise at both intensities (r = 0.21 and 0.30 for 60 and 95% VO2max, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: A critical exercise threshold exists for EN concentration in horses, which is 60% VO2max or less and is related to exercise intensity and duration. Even under conditions of controlled exercise there may be considerable differences in EN concentrations between horses. This makes the value of comparing horses on the basis of their EN concentration questionable.  相似文献   

15.
The aim of this study was to compare the effects of two different carbohydrate sources (fructose and glucose) on the metabolic responses in resting and exercising horses. The following regimes were fed in randomized order to five trained horses at rest and immediately before or during exercise. The resting regime comprised 0.6 kg grass meal pellets (control) or 0.6 kg grass meal pellets supplemented with either 50% glucose or 50% fructose. The exercise regime comprised 0.3 kg grass meal (control) or 0.6 kg grass meal pellets supplemented with either 50% glucose or 50% fructose fed immediately before or during simulated endurance exercise on a treadmill (30 km, total running time 120 min; 15 min rest after 60 min running time). Blood samples were collected for the analysis of glucose, insulin, free fatty acids (FFA) and lactate. In resting horses, glucose supplementation resulted in a significantly higher glycaemic and insulinaemic response than the control or fructose feedings (treatment P < 0.05). Plasma glucose levels were significantly higher after glucose supplementation given before or during exercise. Similar plasma glucose concentrations were observed after fructose was fed before exercise, whereas fructose supplementation during exercise resulted in a lower glycaemic response than glucose feeding (P < 0.05). Plasma insulin, FFA and lactate levels showed exercise-related changes (time P < 0.05), but treatment did not effect these results. Plasma glucose concentrations were elevated during the simulated endurance exercise after glucose feeding, and no counter-regulation by insulin occurred. The higher glycaemic response might be beneficial as exogenous glucose can be used as an energetic substrate during prolonged exercise. Fructose exhibited no clear advantages in comparison with glucose as a carbohydrate source for exercising horses.  相似文献   

16.
In a crossover experiment, eight mature Quarter Horses were exercised by simulated cutting-horse training and fed either a control concentrate (C) or a 10% fat-supplemented concentrate (F) with Bermuda grass hay in a 60:40 ratio. The experiment consisted of two 28-day experimental periods with a 28-day standardization period between treatments. Digestion trials and standardized exercise tests (SET) were conducted every 7 days during experimental periods. Dietary fat had no detrimental effect on digestion of diet constituents, and all digestion coefficients were within expected ranges. Likewise, there was no significant difference in heart rates between treatments or SET days. Plasma lactic acid concentrations did not differ (P > .05) between treatments, however, there was a decline (P < .05) with advancing SET day. When horses were fed fat, there was an increase (P < .05) in muscle glycogen storage from days 0 to 28, but there was no increase (P > .05) in muscle glycogen over time when horses were fed C. On days 7, 14, and 28, muscle glycogen utilization increased (P < .05) from day 0 when horses were fed fat but not C. Pre-exercise data were normalized such that day 0 values equaled zero, due to higher (P < .05) glycogen concentrations for C than F on day 0. Subsequently, muscle glycogen concentrations on day 28 before exercise were higher (P < .05) when horses were fed F than C. The results of this study indicate that Quarter Horses in simulated cutting-horse training can adapt to digestion of a fat-supplemented diet by day 14. However, it may take up to 28 days of adaptation to a fat-supplemented diet to observe increases in glycogen storage and use.  相似文献   

17.
The effect of longeing and glucosamine supplementation on known biological markers of joint disease was studied in yearling quarter horses. Twenty-one yearling quarter horses were randomly assigned to one of 4 treatments: 1) longeing (longeing 20 min daily) supplement control (LN); 2) longeing/glucosamine (LG); 3) walking (mechanical walker for 120 min daily (WN)); and 4) walking/glucosamine (WG). Oral glucosamine was administered at 5.5 g b.i.d. weeks 1-4, 3.5 g b.i.d. during weeks 5-6, and 2.0 g b.i.d. during weeks 7-8. Serum was obtained weekly for 8 wk and analyzed for keratan sulfate and osteocalcin concentrations. Walked horses receiving glucosamine showed slight elevation in serum keratan sulfate compared to controls (P = 0.04). Glucosamine or longeing exercise had no significant effect (6 > or = 0.08) on serum osteocalcin concentrations. Under these conditions, longeing and/or glucosamine supplementation did not significantly alter serum concentrations of keratan sulfate or osteocalcin.  相似文献   

18.
Thousands of hectares of timothy (Phleum pretense L.) grown in the Mid-Atlantic region are infected by cereal rust mite (Abacarus hysterix) that causes discoloration and curling of leaves, decreased nutritional quality, and substantial decreases in yield. A decline in production of timothy hay can lower income for hay producers and cause horse owners to search for alternative hays. Low alkaloid reed canarygrass (Phalaris arundinacea L.) hay has potential as an alternative to timothy hay because it grows well in the Mid-Atlantic region, is believed to have a similar nutrient quality to timothy, and is not as susceptible to cereal rust mite. Eleven mature, stalled Thoroughbred geldings (549 +/- 12.1 kg) that were exercised daily were used to compare voluntary DMI and apparent nutrient DM digestibility of timothy and low-alkaloid Chiefton variety reed canarygrass hay. Horses were paired by age and BW and randomly assigned to timothy or reed canarygrass hay during a 14-d period to measure voluntary DMI followed by a 4-d period to measure apparent DM digestibility. Both hays met the minimum requirements for DE, CP, Ca, P, K, Fe, and Mn, but they did not meet the minimum requirements for Cu, Zn, and Na for horses at maintenance and averaging 550 kg of BW. Timothy hay seemed to have a lower CP concentration (14.4%) compared with reed canarygrass hay (17.1%) and a more desirable Ca:P ratio at 1.6:1 compared with 0.8:1 for reed canarygrass hay. Horses fed timothy consumed more hay (P <0.001) during the voluntary DMI period compared with horses fed reed canarygrass. Greater voluntary DMI of timothy occurred on d 1, 3, and 5 (P <0.05), but DMI was similar for other days. Apparent DM digestibility was greater in horses fed timothy hay by 9.6% compared with horses fed reed canarygrass hay (P <0.05). Horses fed timothy had greater DM digestibility of ADF (P = 0.001), NDF (P = 0.001), sugar (P = 0.05), and Ca (P = 0.001) but lower apparent DM digestibility of CP (P = 0.012) and crude fat (P = 0.004). Timothy hay was superior in voluntary DMI and apparent DM digestibility compared with low-alkaloid reed canarygrass hay fed to horses.  相似文献   

19.
This study aimed to investigate endocrinologic test values and the response to treatment of two commonly encountered causes of endocrinopathic laminitis, equine Cushing's disease (ECD) and equine metabolic syndrome (EMS), in a veterinary practice setting. In particular, the study aimed to determine whether insulin concentration correlated to the severity of clinical laminitis in horses with EMS or ECD. Twenty-five horses were included in the study and assigned to one of three groups: ECD (n = 6), EMS (n = 10), and controls (n = 9). Blood samples were collected at an initial visit and then at regular intervals for the next 12 months. Plasma concentrations of adrenocorticotropin (ACTH), cortisol, and insulin and serum concentrations of glucose and total thyroxine (T4) were obtained. Horses with ECD had significantly higher plasma ACTH concentrations than EMS horses or controls. Horses with EMS and ECD both had significantly higher plasma insulin concentrations than control horses, which was correlated with the Obel grade of laminitis (r = 0.63). After treatment, there was a trend for a reduction in plasma ACTH concentration in horses with ECD. A program of diet and exercise for horses with EMS resulted in reductions in both plasma insulin concentrations and bodyweight, which was variable, depending on the individual. There was a significant correlation between the change in plasma insulin concentration and Obel grade of laminitis (r = 0.69). This study has highlighted the importance of baseline plasma insulin concentration as a potential indicator of the susceptibility of horses to laminitis and the response to a program of diet and exercise.  相似文献   

20.
Effect of sodium bicarbonate on racing Standardbreds   总被引:1,自引:0,他引:1  
Twenty-two Standardbred horses in race training were used in a crossover experiment to determine the effect of oral sodium bicarbonate (NaHCO3) administration on performance and metabolic responses to a 1.6-km (1-mile) race. Horses were paired and one horse in each pair was treated with either NaHCO3 (300 mg/kg BW) or a placebo, 2.5 h before they raced against each other. Each horse was scheduled to compete in two races, approximately 1 wk apart, one on each treatment. Horses always raced in the same pairs. Fourteen horses successfully completed both races. Jugular blood samples were obtained 1.5 h after treatment (rest), immediately before racing, 5 min post-race and 15 min post-race. In six horses, blood samples also were obtained 30 min post-race. Race times averaged 1.1 s faster after NaHCO3 treatment (P less than .1). Sodium bicarbonate treatment also elevated blood pH (P less than .05). In the horses sampled 15 and 30 min post-race, blood lactate disappearance was faster with the NaHCO3 treatment (P less than .05). The NaHCO3 may delay the fatigue precipitated by i.m. acidosis. Because other factors may limit performance (musculoskeletal soundness, cardiovascular and respiratory ability), NaHCO3 would not be expected to enhance the performance of all horses. However, the effect of NaHCO3 on lactate clearance may have implications for all intensively worked horses; because lactate and the associated hydrogen ions are believed to cause muscle damage and soreness, any mechanism to increase their removal rate could benefit the equine athlete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号