首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
活性炭是一类传统的、可工业化生产的多孔质炭材料,由于它具有高的比表面积,可调的孔隙结构与表面化学性质、稳定的物理化学性质以及良好的导电性,因此,活性炭不仅在环保、化工、食品和医药等领域中得到广泛应用,而且具有储存电能和电催化转化燃料的潜力,在超级电容器和燃料电池等新型能源器件领域显示出巨大的应用前景。笔者综述了活性炭作为超级电容器和燃料电池电极材料的主要研究进展。在超级电容器方面,活性炭是作为储存电能的材料,主要综述了活性炭作为超级电容器电极材料的应用历史,气体活化法、化学药品活化法、碱金属活化法等常规方法制备的活性炭储存电能的性能,活性炭表面含氧、氮、硫和磷表面官能团对超级电容器活性炭电化学性能的影响规律,活性炭表面改性技术在超级电容器活性炭方面的应用。在燃料电池方面,活性炭是作为阴极反应的催化剂材料,主要综述了活性炭作为碱性燃料电池、质子交换膜燃料电池和微生物燃料电池阴极材料的研究现状,炭材料催化燃料电池的阴极反应,即氧气还原反应的表面结构特点与反应机理。通过分析总结,明确了活性炭作为新型能源材料的未来发展方向。  相似文献   

2.
美国科学家们已经用近乎办公室普通用纸的纸张,加上一些碳和银的纳米材料,制成了电池和超电容器。这项研究结果拉近了人们与超轻型、可打印电池之间的距离,此类电池将有望制成模片,植入电脑、手机或太阳能电池板使用。  相似文献   

3.
《技术与市场》2005,(1):8-9
高强度纳米纤维美国的研究人员研制出一种迄今为止最为坚韧牢固的人造纤维,同时,这种纤维还具有导电的特性。这种由碳纳米管制成的纤维可应用于具有防弹功能的衣料,以及能够向传感器、电子器件和和通讯装置传输电力的电子织物上。美国一化学家将两根捻合的纤维与一节电池连接后,他们在两股纤维之间发现了电压的存在,这就好比将这一回路变成了一个超级电容器—一种能够储存电荷装置。Baughman 研究小组于是将他们的超级电容器纤维与更多的传统纤维编织在一起,织成了一小块电子织物的样品—如果与一个电源相连,将能够为织物上的电子设备传输电力。  相似文献   

4.
美国科学家们已经用近乎办公室普通用纸的纸张,加上一些碳和银的纳米材料,制成了电池和超电容器。 这项研究结果拉近了人们与超轻型、可打印电池之间的距离,此类电池将有望制成模片,植入电脑、手机或太阳能电池板使用。  相似文献   

5.
综合TNW科技网站、澳大利亚Drive网站消息:日本制纸有限公司正在试验利用树木制造电动车蓄电池的方法,以代替锂离子电池。该公司希望能够利用柳杉等树种制成的木浆来制造纤维素纳米纤维,并将其精制到百分之一微米或更小,以制造超级电容器,作为电动车动力。日本制纸有限公司此前长期利用纤维素纳米纤维生产纸尿裤等家用产品随着纳米纤维备制技术的进步与突破,该公司认为可利用木质纤维素纳米纤维生产超级电容器,替代锂离子电池,并应用于汽车和智能手机等领域。  相似文献   

6.
由于超级电容器额定电压低,在高压大容量应用场合需将超级电容器进行串并联使用,各单体电容器间压差直接影响着超级电容器的性能和寿命。基于上述原因提出STM32的超级电容器管理系统设计方案,使用隔离DC-DC进行均衡,通过低损均衡方式提高了超级电容器的储能效率和可靠性,通过3G网络与远程监控终端实现数据共享,集中实现对整个超级电容管理系统的实时监控。  相似文献   

7.
概述了纤维素气凝胶通过炭化和复合导电物质实现导电功能的技术手段,及其在超级电容器中的应用研究现状。重点介绍了纤维素导电气凝胶孔结构及其复合结构对超级电容器电化学性能的影响,包括:依据电解液离子大小调控电极材料的孔结构和孔径分布,优化双电层电容行为;借助石墨烯等高导电性物质提高复合材料的导电性和比表面积,实现复合电极材料性能的增强及其在柔性能源储存装置中的应用;结合纤维素炭气凝胶优良的导电性与结构稳定性以及金属化合物高的赝电容和大的能量密度特性,实现复合电极材料中双电层电容和赝电容的协同增效作用。最后针对纤维素导电气凝胶及其复合材料在制备和超级电容器应用中面临的机遇与挑战,指出未来发展方向。  相似文献   

8.
近年来,生物质碳材料由于来源广泛、化学稳定性好、比表面积高、环境友好等优点已成为备受关注的电极材料,在能源转化和能量储存领域显示出巨大的应用潜力。但是生物质碳材料的理论比电容有限,且分散性差、机械脆性等缺陷也阻碍了其性能的完全实现,进一步影响了实际比电容。当其用于超级电容器时,受低能的静电作用力驱使,生物质碳材料基超级电容器的能量密度往往较低。将赝电容活性材料MnO_2沉积在生物质碳材料基质上,利用生物质碳材料与MnO_2的协同效应,可获得电导率、循环稳定性和电化学性能优异的复合材料。在介绍MnO_2结构和性质的基础上,对生物质碳材料/MnO_2复合电极材料的制备方法展开综合述评。此外,还总结了生物质碳材料/MnO_2复合物作为电极材料在超级电容器上的研究进展,并指出了其在应用过程中存在的问题。最后,就生物质碳材料/MnO_2复合物在高性能和柔性超级电容器未来应用方面进行分析,认为对生物质碳材料基底的改性、MnO_2纳米结构的调控和超级电容器结构的设计优化将是今后的重点研究方向。  相似文献   

9.
技术需求     
正铅酸蓄电池定量密闭间歇式内化成装置及工艺解决问题:①铅蓄电池内化成过程中实现密闭化成,无酸雾排放;②定量加酸,无酸液浪费;③缩短化成时间,提高电池一致性及循环使用寿命。可让充电电池实现瞬间充电的技术钛酸钡电介质的陶瓷超级电容器技术  相似文献   

10.
正美国莱斯大学科学家用黏土和一种电解液混合,开发出一种既能当电解液又能当隔离板使用的"复合板",可作为一种新型高温超级电容器。"多年来,研究人员一直想造出像电池和超级电容器这样能在高温环境下稳定工作的能源存储设备,但由于传统材料本身性质的制约,一直未能攻克难题。"莱斯大学材料科学家帕里柯·阿加恩说,"我们的革新是找到了一种能在高温下保持稳定的、非传统  相似文献   

11.
在超级电容器工程应用中,电压、工作温度是影响使用寿命和应用安全的重要因素。针对该应用特点,设计了一种基于超级电容器应用的采样控制器并给出应用效果。  相似文献   

12.
分析防紫外线纺织品的发展状况后,提出了开发防紫外线纺织品新的思路,选择竹纤维为原料,分别对纤维和织物进行整理,将紫外线屏蔽剂固着于织物表层,以提升纺织品的防紫外线功能.  相似文献   

13.
木质素是一种绿色环保、低成本的不规则酚类聚合物,其结构中富含羟基和甲氧基等官能团,并且可以从造纸工业的副产品以及农林废弃物中大量获取,因此在各行各业中具有巨大的应用潜力。在储能领域,大量的研究报道了木质素作为可再生碳源制备用于储能装置的电极材料。近年来,越来越多的研究关注了木质素结构中丰富的官能团结构,并充分利用官能团性质将其应用于储能设备,如:利用羟基的亲水性将木质素应用于液流电池的膜结构中提高膜的质子传导率,利用酚-醌结构的可逆变化增加超级电容器的赝电容,利用与苯环共轭的发色基团对太阳能电池光电化学界面进行调控与敏化,利用木质素结构高电荷密度的含氧官能团改善锂离子电池存储的不稳定性,利用木质素分子中丰富的碳和杂原子官能团制备电极从而提高燃料电池的电化学性能。基于木质素分子的官能团结构和性能特点,概述木质素分子对超级电容器、锂离子电池、燃料电池、太阳能电池、液流电池等主流储能器件电化学性能的提升作用和代表性应用,认为最大化保留木质素分子的官能团并将其应用于电化学器件,可以实现木质素分子的多功能化应用,充分发挥木质素基团的特点以提高储能设备的电化学性能。最后,总结归纳了木质素分子应用于...  相似文献   

14.
详细阐述了竹炭基超级电容器材料的作用原理、制备工艺和影响因素,介绍了其结构设计和工艺方面的研究进展。相对于单一活性竹炭材料,重点分析了以竹炭作为赝电容材料生长/嵌合模板的竹炭基复合材料,赝电容材料与电解液界面之间发生的氧化还原反应,体现出双电层和赝电容的高效协同效应,使竹炭基碳材料具有更为广泛的应用领域。在总结当前竹炭基超级电容器材料研究成果及所面临问题的基础上,对利用我国丰富的竹材资源在超级电容器领域的应用前景进行了展望。  相似文献   

15.
《技术与市场》2006,(7):7-8
压敏纺织品英国研究人员开发出一种对压力敏感的织物结构。按照欧洲专利EP 1 052 485的介绍,该材料可应用于病床、纺织品、计算器等。 Brunel大学的研究人员制造出由两个饰面构成的织物,它是用一层绝缘层将导电层饰面之间隔开的多层织物,绝缘层是耐水的。这种嵌入式耐水层意味着织物多半不会引起短路,因此,也不需要对织物的  相似文献   

16.
《技术与市场》2002,(12):11-11
超薄纸电池 以色列一家公司开发出一种纸一样薄的电池。这种超薄电池来存储和输出电流,将电解质和电极制成一种独特的墨汁,电池也就可直接印刷在纸张上,不象一般电池那样须要用容器来装载电解质液体和 墨西哥一家  相似文献   

17.
概述了木棉纤维的天然特性,如质轻、中空度极高(可达80%~90%),表面呈超疏水性等;同时介绍了可普遍用以提升木棉纤维应用特性的物理和化学改性方法。重点梳理总结了近年来木棉纤维及其改性处理后作为环保型吸油材料、在锂-硫电池正极材料和超级电容器电极材料的应用,以及与聚酯材料复合制备吸声材料的研究进展。针对国内外木棉纤维综合开发利用的研究现状,指出木棉纤维未来在拓展新用途以及高附加值利用方面所面临的机遇和挑战。  相似文献   

18.
纤维素是自然界中一种轻质、生物相容性好以及柔韧性强的生物高分子材料,在柔性超级电容器、生物传感器以及电磁屏蔽等领域得到了广泛应用。在柔性超级电容器领域中,纤维素基材料的多羟基结构是电解质离子传导的良好介质,有助于提高电极材料的电容特性以及循环特性,并且易与导电活性材料(如:石墨烯、碳纳米管、导电高分子)通过涂布、共混、层层自组装以及原位聚合等方法构建导电框架以制备柔性电极材料。综述了基于纤维素材料的柔性超级电容器电极开发的相关研究,重点介绍了基于不同纤维素基原料(原生纤维素、纳米纤维素以及纤维素衍生物)制备柔性超级电容器电极的方法以及所得电极的电化学性质,分析归纳了纤维素基材料在柔性电极中的主要作用:作为骨架支撑柔性电极材料、充当柔性基底(可兼有隔膜作用)、形成多孔结构传输电解质离子。最后,对纤维素材料在柔性电极材料领域的发展趋势进行了展望。  相似文献   

19.
创新技术     
超级电容器石家庄开发区高达科技开发有限公司研制的具有自主知识产权的超级电容器通过了专家鉴定。该超级电容器是一种高储能密度的电容器,具有大功率放电的特点,其技术指标达到国内领先水平,进入国际先进行列,填补了我国法拉以上级别的电容器在最高为400V电压下可进行大电流快速充放的空白,有着非常广阔的市场前景。该产品的推广应用将带来巨大的经济效益和引发相关应用领域的一次技术进步。超级电容器是一种新型的基础性储能元件,属物理二次电源,所以不但储电能力超强,可广泛应用于各种需要二次电源提供短时大功率放电的场合和各种电脉冲机电设备,部分或全部取代其所使用的蓄电池,并显著改善其工作性能,而且不会像化学电池或蓄电池那样对环境造成污染。高达公司开发的超级电容器属于石家庄市2000年度科学研究与发展计划重点攻关计划的课题,与国外同类技术比较,最大电流与国外先进水平持平,最高积能密度和最高工作电压都有所超越。高效镀锌原板清洗剂高效脱脂清洗剂由攀钢研制成功,这种名为PY—AO的清洗剂脱脂性能达到国内先进水平,清洗效果优于某些国外名牌产品。清洗剂是热镀锌工序用于改善原板表面清洁度,保证镀锌效果的必须产品。该清洗剂可将热镀锌原板表面残留油污...  相似文献   

20.
以大豆蛋白(SPI)和丙烯酰胺(AAm)为原料,过硫酸铵(APS)为引发剂,N,N′-亚甲基双丙烯酰胺(MBAA)为交联剂,氯化锂为电解质盐,N,N,N,N′-四亚甲基乙二胺(TEMED)为促进剂制备得到大豆蛋白水凝胶电解质,探究了其力学性能以及组装成超级电容器后的电化学性能。研究结果表明:制得的大豆蛋白水凝胶电解质具有优异的弹性以及耐疲劳性能,这是由于SPI纳米颗粒通过塑性变形及相互摩擦耗散外力,聚丙烯酰胺网络维持结构完整。在经历80%的压缩应变循环100次后,应力保持率始终在100%以上,塑性变形率低于7%,能量损耗系数小于0.2。另外,该水凝胶电解质具有较高的离子电导率,可与聚吡咯/碳纳米管(PPy/CNTs)纸复合电极组装成固态超级电容器。当水凝胶电解质的含水率由60%增加到90%,经GCD方法计算得到固态超级电容器的比电容由58 F/g增加到83 F/g;在1.2 A/g的电流密度下,固态超级电容器的能量密度为3.95~6.86 W·h/kg,功率密度为206.69~226.99 W/kg,与已报道的超级电容器的能量密度和功率密度进行比较,均表现出高能量密度和高功率密度优势,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号