首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc biofortification of staple food crops is essential for alleviating worldwide human malnutrition. Agronomic interventions to promote this should include fertilizer selection and management. A chelated Zn source, Zn‐EDTA, and an inorganic Zn source, ZnSO4 × 7 H2O, were applied either by banding or by broadcasting in soil, and Zn fractions in soil and Zn uptake by wheat were determined in a pot experiment. Compared to ZnSO4 × 7 H2O, Zn‐EDTA produced higher Zn concentration in grain regardless of application method and even at a lower application rate. Residual Zn fraction was the largest Zn fraction with both ZnSO4 and Zn‐EDTA amendment. ZnSO4 banded in soil caused Zn fractions to be restricted to the Zn‐amended soil band and resulted in lower grain Zn concentrations than did broadcast ZnSO4. Planting wheat slowed Zn fixation by promoting the maintenance of a high concentration of Zn fraction loosely bound to organic matter (LOM‐Zn) in soil. Zn‐EDTA was a better Zn source for Zn biofortification of wheat than was ZnSO4.  相似文献   

2.
Seeds enriched with zinc (Zn) are ususally associated with better germination, more vigorous seedlings and higher yields. However, agronomic benefits of high‐Zn seeds were not studied under diverse agro‐climatic field conditions. This study investigated effects of low‐Zn and high‐Zn seeds (biofortified by foliar Zn fertilization of maternal plants under field conditions) of wheat (Tritcum aestivum L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) on seedling density, grain yield and grain Zn concentration in 31 field locations over two years in six countries. Experimental treatments were: (1) low‐Zn seeds and no soil Zn fertilization (control treatment), (2) low‐Zn seeds + soil Zn fertilization, and (3) Zn‐biofortified seeds and no soil Zn fertilization. The wheat experiments were established in China, India, Pakistan, and Zambia, the rice experiments in China, India and Thailand, and the common bean experiment in Brazil. When compared to the control treatment, soil Zn fertilization increased wheat grain yield in all six locations in India, two locations in Pakistan and one location in China. Zinc‐biofortified seeds also increased wheat grain yield in all four locations in Pakistan and four locations in India compared to the control treatment. Across all countries over 2 years, Zn‐biofortified wheat seeds increased plant population by 26.8% and grain yield by 5.37%. In rice, soil Zn fertilization increased paddy yield in all four locations in India and one location in Thailand. Across all countries, paddy yield increase was 8.2% by soil Zn fertilization and 5.3% by Zn‐biofortified seeds when compared to the control treatment. In common bean, soil Zn application as well as Zn‐biofortified seed increased grain yield in one location in Brazil. Effects of soil Zn fertilization and high‐Zn seed on grain Zn density were generally low. This study, at 31 field locations in six countries over two years, revealed that the seeds biofortfied with Zn enhanced crop productivity at many locations with different soil and environmental conditions. As high‐Zn grains are a by‐product of Zn biofortification, use of Zn‐enriched grains as seed in the next cropping season can contribute to enhance crop productivity in a cost‐effective manner.  相似文献   

3.
ABSTRACT

This study was conducted to evaluate influence of zinc (Zn) application on productivity, grain biofortification and grain quality of wheat planted under plough tillage (PT) and zero tillage (ZT) systems. Zn was delivered as soil application (10 kg ha?1), foliage spray (0.025 M) and seed priming (0.5 M) in wheat planted under PT and ZT systems. ZT had higher total soil porosity, total soil organic matter, soil organic carbon and soil microbial biomass carbon than PT. Zn application, by either method, improved grain yield, grain Zn and grain quality in both tillage systems. The grain Zn concentration was 72% and 59% higher with soil-applied Zn in ZT wheat during 2016–2017 and 2017–2018, respectively, compared with no Zn. However, Zn seed priming was the most effective in improving wheat grain yield in both tillage systems. Foliage and Zn soil application were better in improving the indices of Zn use efficiency of Zn. In conclusion, Zn seed priming was the most effective method in improving the wheat grain yield, whereas soil Zn application in ZT and foliar applications in PT were the most effective for grain Zn biofortification. However, Zn soil application was the most cost-effective method of Zn application.  相似文献   

4.
我国主要麦区小麦籽粒锌含量对叶喷锌肥的响应   总被引:7,自引:2,他引:5  
【目的】我国小麦籽粒锌含量普遍偏低,叶喷锌肥是提高小麦籽粒锌含量的重要措施,研究我国主要麦区小麦籽粒锌含量对叶喷锌肥的响应,对小麦科学施用锌肥、 调控小麦籽粒锌营养状况有重要意义。【方法】本研究在我国14个省(市)主要麦区布置了30个田间试验,在每个试验点设置不喷锌对照和叶面喷锌两个处理,以当地主栽小麦品种为供试作物,通过测定收获期小麦产量、 各器官锌含量,研究了叶喷锌肥提高小麦籽粒锌含量的效果、 区域差异及其与土壤主要理化性质、 小麦拔节前植株锌含量的关系。【结果】 30个试验点的结果显示,叶面喷锌对小麦籽粒产量、 生物量和收获指数均无明显影响,但籽粒锌含量显著提高,叶面喷锌的籽粒锌含量比对照平均提高5.2 mg/kg(17.5%), pH7.0的区域提高5.3 mg/kg(16.4%), pH 7.0的区域提高5.2 mg/kg(18.4%)。小麦地上部锌吸收与分配在两个区域间没有显著差异,叶面喷锌的小麦籽粒、 颖壳和茎叶平均锌吸收量分别为255.5、 26.0和117.5 g/hm2,比对照增加19.4%、 28.7% 和99.2%; 锌收获指数为64.1%,比对照降低12.2%。籽粒锌利用率和籽粒锌强化指数也不受区域的影响,平均值锌利用率为3.0%,锌强化指数为3.8 mg/kg。无论叶面喷锌与否,籽粒锌含量和土壤有效锌均呈显著正相关,土壤有效锌含量每升高1.0 mg/kg,籽粒锌含量平均提高约4.0 mg/kg; 籽粒锌含量和土壤pH呈显著负相关,土壤pH每升高1个单位,籽粒锌含量平均降低3.8 mg/kg; 籽粒锌含量与土壤有机质没有显著相关性。小麦籽粒锌含量与拔节前植株锌含量极显著正相关,拔节前植株锌含量每升高1.0 mg/kg,籽粒锌含量平均提高0.4 mg/kg。【结论】 除叶面喷施锌肥外,调节土壤酸碱性,提高土壤有效锌含量,促进小麦生长前期植株对锌的吸收对改善我国小麦锌营养均具有重要意义。  相似文献   

5.
Zinc application is generally recommended to enrich wheat grains with Zn; however, its influence on Zn bioavailability to humans has not received appreciable attention from scientists. In this pot experiment, seven Zn rates (from 0 to 18 mg kg?1 soil) were applied to two wheat cultivars (Shafaq-2006 and Auqab-2000). Application of Zn significantly increased grain yield, grain Zn concentration and estimated Zn bioavailability, and significantly decreased grain phytate concentration and [phytate]:[Zn] ratio in wheat grains. The response of grain yield to Zn application was quadratic, whereas maximum grain yield was estimated to be achieved at 10.8 mg Zn kg?1 soil for Shafaq-2006 and 7.4 mg Zn kg?1 soil for Auqab-2000. These estimated Zn rates were suitable for increasing grain Zn concentration and Zn bioavailability (>2.9 mg Zn in 300 g grains) to optimum levels required for better human nutrition. Conclusively, Zn fertilization for Zn biofortification may be practiced on the bases of response curve studies aimed at maximizing grain yield and optimum Zn bioavailability. Moreover, additive Zn application progressively reduced the grain Fe concentration and increased the grain [phytate]:[Fe] ratio. However, a medium Zn application rate increased grain Ca concentration and decreased the grain [phytate]:[Ca] ratio. Hence, rate of Zn application for mineral biofortification needs to be carefully selected.  相似文献   

6.
A greenhouse experiment was conducted to investigate the immediate effect of application of mono‐ammonium phosphate (MAP), single superphosphate (SSP), and triple superphosphate (TSP) fertilizers containing varying concentrations of Cd on (1) chemical speciation of Cd and Zn in soil solution by chemical‐equilibrium calculations (MINEQL+4.6 model), (2) growth of barley plants, (3) concentrations of Cd, P, and Zn in soil solution and plant tissue, as well as total plant accumulation of Cd, P, and Zn, and (4) monitoring pH and element changes during incubation periods following phosphate application. Results show that, in general, the pH of soil solution increased during the first 40 d of incubation, then declined. Also, at the end of incubation period, pH of soil solution was affected by fertilization source and fertilization rate. The concentration of Cd in soil solution changed with time. Phosphate fertilization (p < 0.05) or fertilizer source (p < 0.05) showed consistent effects. Also, the application of phosphate fertilizers with three rates significantly increased Zn concentrations in soil solution during the first half (0–30 d) of incubation period and then decreased but still more than in the control. In general, application of different sources of phosphate at 100 g kg–1 did not change the dominant forms of Cd in soil solution during all incubation time intervals. Speciation of Zn in the control after 30 d of incubation had changed, in comparison to 10 d of incubation, and the dominant forms were Zn2+, ZnOH+, ZnHCO3, ZnCO3(aq), and Zn(OH)2(aq). Adding phosphate fertilizer significantly increased both shoot and root dry weight compared to control, indicating P was a growth‐limiting factor in the control plants. The Zn concentrations in shoot and root were lower in the TSP‐ and SSP‐fertilizers treatment than those in the MAP and fertilizer treatments at all rates of fertilization. Adding phosphate increased the Cd : Zn and P : Zn ratios in the shoot and root tissue, with the effect being greater with increasing fertilization rate. Phosphate fertilization greatly increased the total accumulation of Cd of barley compared with the control plants (p < 0.001), with the effect being greater with increasing fertilization rate. Source and rate of fertilizers, and their interactions had significant effect (p < 0.05) on Cd accumulation in the whole plant.  相似文献   

7.
Abstract

Foliar fertilization with micronutrients and amino acids (AAs) has been used to increase the grain yield and quality of different crops. The aim of the present study was to evaluate the effects of Zn and AAs foliar application on physiological parameters, nutritional status, yield components and grain yield of wheat-soybean intercropping under a no-till management. We used a randomized block experimental design consisting of eight treatments and four replicates. The treatments were five Zn rates (0, 1, 2, 4 and 8?kg ha?1) and 2?L ha?1 of AAs and three additional treatments: a control (without the Zn or AA application), 2?kg ha?1 Zn and 2?kg ha?1 Zn + 1?L AA. The treatments were applied by spraying during the final elongation stage and at the beginning of pre-earing for the wheat and in growth stage V6 for the soybean for two crop years in a Typic Oxisol (860?g kg?1 clay). Zinc foliar fertilization increased the wheat grain Zn concentrations. The Zn rates and AA foliar fertilization in soil with did not affect the physiological parameters, nutrient status or yield components. The AA application at the different concentrations tested changed the soybean grain yield and the leaf N concentration. The results suggest that Zn and amino acids application increases the grains Zn concentration in the wheat, being an important strategy to agronomic biofortification.  相似文献   

8.
氮锌配施对不同冬小麦品种产量及锌营养的影响   总被引:13,自引:2,他引:11  
为比较石灰性土壤氮锌配施对不同小麦品种生长及锌营养的影响,选10种本地主要种植小麦品种,进行连续两年的田间试验,测定小麦产量及锌含量。结果表明,在石灰性土壤上单施锌肥和氮锌配施对小麦产量、籽粒锌含量的影响因品种而异。单施锌肥及氮锌配施处理可显著增加土壤有效锌含量,但单施锌肥处理仅增加"西杂1号"、"武农148"、"郑麦9023"籽粒锌含量;氮锌配施增加除"小偃22"外其余9种供试小麦品种籽粒锌含量,增幅为7.3%~54.7%。单施锌肥对小麦锌累积量增加的效果不明显;氮锌配施可显著增加小麦地上部锌累积量,两季分别增加6.5%、29.8%。单施氮肥可显著增加小麦锌吸收,但其主要累积在小麦茎叶部。在石灰性土壤上,单施锌肥虽显著增加了土壤有效锌含量,但对小麦产量及籽粒Zn含量增加有限,氮锌肥配施可取得较好效果。  相似文献   

9.
长期施肥对潮土耕层土壤和作物籽粒微量元素动态的影响   总被引:4,自引:0,他引:4  
Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micronutrients in an Aquic Inceptisol and maize and wheat grains in Zhengzhou,China.The results showed that soil total Cu and Zn markedly declined after 19 years with application of N fertilizer alone.Soil total Fe and Mn were significantly increased mainly due to atmospheric deposition.Applications...  相似文献   

10.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

11.
Six of originally eight long‐term trials in Halle (Saale), Germany, are still continuing. Five are situated at Julius‐Kühn‐Feld, an experimental station launched by Julius Kühn in Halle in 1866. Apart from the Eternal Rye trial established in 1878, those are phosphorus, potassium, lime, and organic fertilization long‐term trials, all being launched by Karl Schmalfuß in 1949. Other long‐term trials have been terminated, but data are available on the effects of nitrogen fertilization and the physiological reaction of fertilizers. Another long‐term trial in Halle (Adam‐Kuckhoff‐Straße 17b) investigates the influence of fertilization on soil formation from loess. Up to now, the major results are as follows: 1. Changes in soil‐ecological properties due to fertilization and rotation were only evident after 30 years, and new steady states sometimes took 70 years to occur. 2. In the long term, the C‐ and N‐contents of the soil largely depend on the amount of hardly decomposable organic matter applied with organic fertilization. High mineral‐N doses, with consequent high crop and root residues, increased the humus content of the soil. 3. Mineral fertilization can replace organic fertilization in terms of sustainable yield capacity provided equal nutrient amounts were applied. 4. The high P‐supply ability of the soil in Halle could not be explained by traditional soil analysis methods of calculating plant‐available P. With some restrictions, the same is valid for K. 5. At the experimental site, soluble salts (nitrate, sulphate) accumulated in the subsoil. 6. A regular lime demand of central German chernozems could be proved, especially in case of low soil organic matter (SOM) and physiologically acid fertilization.  相似文献   

12.
Zinc (Zn) fertilization is important for Zn crop biofortification as well as increasing yields, thus proper Zn recommendations for soil application is needed for Zn deficient soils. The effectiveness of Zn applications was evaluated in different combinations of rates (2.5, 5.0, 7.5, and 10.0?kg?ha?1 per year) and frequencies (initial, alternate, and every year) in rice (Oriza sativa L.) – wheat (Triticum aestivum L.) cropping system in a Zn-deficient upland calcareous soil in the fourth year. Zn applications to rice at 7.5 and 10?kg?ha?1 of alternate year and 5.0 to 10?kg?ha?1 of every year had the highest rice equivalent yield as compared to no-Zn treatment. Hence, Zn application to rice at 7.5?kg?ha?1 at alternate years is the lowest rate at which highest rice equivalent yield of rice-wheat cropping system can be obtained.  相似文献   

13.
Late application of nitrogen (N) fertilizers at heading or anthesis is usually performed to produce wheat (Triticum aestivum L.) with high bread‐making quality. However, increasing energy costs and ecological problems due to N losses call for efficient and simplified N fertilization strategies. This study aimed to investigate the effect of late N fertilization on grain protein quality and thus baking quality and to evaluate if similar wheat quality can be maintained without late N application. Field experiments with two winter wheat cultivars differing in quality groups were conducted. The fertilization treatments comprised a rate of 220 kg N ha?1 applied in two or three doses (referred to as split N application), and 260 kg N ha?1 applied in four doses (additional late N fertilization) with different N fertilizer types. The results show that although split N application had no effect on grain protein concentration (GPC), it affected N partitioning in the grain, increasing mainly the concentration and proportion of the glutenin fraction. As a result, baking quality was improved by split N application. Late N fertilization enhanced GPC and the relative abundance of certain high molecular weight glutenin subunits (HMW‐GS). However, it had no effect on N partitioning in the grain and did not further improve baking quality. No obvious differences were found between N fertilizer types on grain yield and quality. The N fertilization effect was more pronounced on the wheat cultivar whose baking quality was more dependent on protein concentration. In evaluating baking quality of wheat flour, gliadin and glutenin proportions were better correlated with loaf volume than the overall protein concentration.  相似文献   

14.
High zinc (Zn) concentration of seeds has beneficial effects both on seed vigor and human nutrition. This study investigated the effect of Zn biofortification on growth of young durum wheat (Triticum durum cv. Yelken) seedlings under varied Zn and water supply. The seeds differing in Zn concentrations were obtained by spraying ZnSO4 to durum wheat plants at different rates under field conditions. Three groups of seeds were obtained with the following Zn concentrations: 9, 20, and 50 mg Zn kg?1. The seeds differing in Zn were tested for germination rate, seedling height, shoot dry matter production, and shoot Zn concentration under limited and well irrigated conditions in a Zn‐deficient soil with and without Zn application. In an additional experiment carried out in solution culture, root and shoot growth and superoxide dismutase activity (SOD) of seedlings were studied under low and adequate Zn supply. Low seed Zn concentration resulted in significant decreases in seedling height both in Zn‐deficient and sufficient soil, but more clearly under water‐limited soil condition. Decrease in seed germination due to low seed Zn was also more evident under limited water supply. Increasing seed Zn concentration significantly restored impairments in seedling development. Drought‐induced decrease in seedling growth at a given seed Zn concentration was much higher when soil was Zn‐deficient. Increasing seed Zn concentration also significantly improved SOD activity in seedlings grown under low Zn supply, but not under adequate Zn supply. The results suggest that using Zn‐biofortified seeds assures better seed vigor and seedling growth, particularly when Zn and water are limited in the growth medium. The role of a higher antioxidative potential (i.e., higher SOD activity) is discussed as a possible major factor in better germination and development of seedlings resulting from Zn‐biofortified seeds.  相似文献   

15.
通过田间试验研究了施用不同肥料和不同施肥方法等对强筋小麦养分吸收和产量品质的影响。结果表明:在氮肥用量相同时,氮肥后移小麦产量和品质均好于全部基施(习惯施肥)处理;高氮和硫酸铵处理能提高强筋小麦的品质。磷酸二铵提高小麦产量效果好于过磷酸钙,而对子粒品质影响则过磷酸钙好于磷酸二铵;高量磷肥虽然不能进一步提高小麦产量,但能改善小麦的品质。增施有机肥和钾肥可促进小麦对N、P、K养分的吸收,显著提高小麦产量和品质,是砂姜黑土区优质高产强筋小麦重要施肥技术。锌肥能提高小麦产量和品质,含硫肥料有改善小麦品质的作用。试验表明,在砂姜黑土上,施用有机肥,稳定磷肥用量,加大氮、钾肥用量,配施锌肥和硫肥,分期施用氮肥(追肥量占总氮量比例在40%以上)有利于强筋小麦的优质高产。  相似文献   

16.
【目的】在潜在缺锌石灰性土壤上,特别是种植小麦并以此为主粮的地区,缺锌问题日益受到人们的关注。提高小麦籽粒锌含量以满足人体锌需求,对于改善人体锌营养不良的现状具有重要意义。【方法】以ZnSO4和Zn-EDTA为锌源,布置了2个为期两年的田间定位试验。试验均采用裂区设计,即主因子为喷施锌肥,设喷施与不喷2个主处理;副因子为土施方法,设不施锌、均施、条施3个副处理。在第1季试验基础上,第2季不再土施锌肥,调查了小麦籽粒锌含量、土壤有效锌含量及锌组分含量,分析了第1季锌肥的后效。【结果】第2季单独喷施ZnSO4小麦籽粒Zn含量提高了11.13 mg/kg,提高幅度为33%,而喷Zn-EDTA无明显效果。不喷Zn时,第1季均施和条施的ZnSO4在第2季均表现出一定后效,小麦籽粒锌含量比对照分别提高了6.05、3.51 mg/kg,提高幅度为20%和11%;喷Zn时,第2季均施和条施ZnSO4处理的小麦籽粒锌含量增加了28.59和21.59 mg/kg,增幅100%和76%,表现出显著富锌作用,但增加幅度比单独喷施要小很多。第1季土施的两种锌肥在第2季小麦收获后DTPA-Zn仍维持在1 mg/kg以上,即不喷Zn时,均施和条施ZnSO4处理的土壤有效锌含量分别为1.99和1.65 mg/kg,均施和条施Zn-EDTA的有效锌含量分别为1.23和1.01 mg/kg;喷Zn时,均施和条施ZnSO4处理的土壤有效锌含量分别为1.44和2.22 mg/kg,均施和条施Zn-EDTA处理的有效锌含量分别为1.16和1.10 mg/kg。土壤各锌组分含量均表现为:松结有机态Zn > 碳酸盐结合态Zn > 氧化锰结合态Zn > 紧结有机态Zn > 交换态Zn。具体而言,第1季均施和条施ZnSO4,第2季结束后交换态Zn(Ex-Zn)、松结有机态Zn(Wbo-Zn)、碳酸盐结合态Zn(Car-Zn)含量均显著提高,其提高幅度分别为184%和116%;75%和85%;53%和43%。而均施和条施Zn-EDTA仅Ex-Zn、Wbo-Zn含量显著提高,其提高幅度分别为232%和132%;18%和10%。均施Zn-EDTA处理的锌肥利用率为0.27%,条施为0.70%,后者约为前者的3倍;而条施与均施ZnSO4无差异。【结论】在潜在缺锌石灰性土壤上,单独喷施ZnSO4显著提高了小麦籽粒锌含量,而喷施Zn-EDTA效果不显著;土施ZnSO4和Zn-EDTA,不论条施或均施,虽然会使有效锌(DTPA-Zn)及较高活性锌形态(Ex-Zn、Wbo-Zn)长时间维持较高含量,但对第2季小麦籽粒富锌的后效有限;土施基础上配合喷施ZnSO4对小麦籽粒锌的含量效果最令人满意。  相似文献   

17.
Phosphorous (P) and zinc (Zn) are plant nutrients that interact with each other in soil–plant systems. Such interactions may cause deficiency of one of the nutrients interacting with each other if interactions are antagonistic. In the present trial, a field experiment was conducted to investigate the interactive effect of Zn (0 and 16 kg ha?1) and P (0 and 60 kg ha?1) on growth, yield and grain Zn concentration of two maize (Zea mays L.) genotypes, i.e., Neelam (local) and DK‐6142 (hybrid). Growth and yield of both maize genotypes were increased by the application of Zn and P treatments compared with control, but Zn+P was more effective than their sole application. When compared to control, combined application of Zn+P increased grain Zn and P concentrations by 52% and 32%, respectively, averaged for the two genotypes. Single application of P decreased grain Zn concentration by 10% over control. Application of P and Zn particularly in combination decreased the grain [phytate] : [Zn] ratio and increased the estimated human Zn bioavailability in grains based on a trivariate model of Zn absorption in both maize genotypes. Conclusively, combined Zn+P application appeared more suitable for enhancing grain yield and agronomic Zn biofortification in maize grains. However, Zn fertilization aiming at increasing grain yield and grain Zn concentration should consider the genotypic variations and P rate.  相似文献   

18.
In recent years, organic agriculture has been receiving greater attention because of the various problems like deterioration in soil health and environmental quality under conventional chemical‐intensive agriculture. However, little information is available on the comparative study related to the impact of use of mineral fertilizers and organic manures on the soil quality and productivity. A long‐term field experiment was initiated in 2001 to monitor some of the important soil‐quality parameters and productivity under soybean–wheat crop rotation. The treatments consisted of 0, 30, and 45 kg N ha–1 for soybean and of 0, 120, and 180 kg N ha–1 for wheat. The entire amount of N was supplied to both the crops through urea and farmyard manure (FYM) alone or in combination at 1:1 ratio. Results indicated that Walkley‐and‐Black C (WBC; chromic acid–oxidizable) exhibited a marginal increase under only organic treatments as compared to control treatment (without fertilizers and manure) after completion of five cropping cycles. In case of labile‐C (KMnO4‐oxidizable) content in soil, relatively larger positive changes were recorded under organic, mixed inputs (integrated) and mineral fertilizers as compared to WBC. Maximum improvement in the values of C‐management index (CMI), a measure of soil quality was recorded under organic (348–362), followed by mixed inputs (268–322) and mineral fertilizers (198–199) as compared to the control treatment after completion of five cropping cycles. Similarly there was a substantial increase in KCl‐extractable N; in Olsen‐P; as well as in DTPA‐extractable Zn, Fe, and Mn under organic treatments. Although labile soil C positively contributed to the available N, P, K, Zn, Fe, and Mn contents in soil, it did not show any relationship with the grain yield of wheat. After completion of the sixth cropping cycle, organic treatments produced 23% and 39% lower grain yield of wheat as compared to that under urea‐treated plots. Relatively higher amount of mineral N in soil at critical growth stages and elevated N content in plant under mineral‐fertilizer treatments compared to FYM treatments were responsible for higher yield of wheat under mineral fertilizers.  相似文献   

19.
Maize (Zea mays L.) is generally low in bioavailable zinc (Zn); however, agronomic biofortification can cure human Zn deficiency. In the present experiment, Zn was applied in pots as ZnSO4 · 7H2O to maize cultivar DK-6142 as foliar spray (0.5% w/v Zn sprayed 25 days after sowing and 0.25% w/v at tasseling), surface broadcasting (16 kg Zn ha?1), subsurface banding (16 kg Zn ha?1 at the depth of 15 cm), surface broadcasting + foliar and subsurface banding + foliar in comparison to an unfertilized control. As compared to control, all treatments significantly (P ≤ 0.05) increased growth, yield and nutritional attributes in maize. Grain Zn and protein concentrations were correlated and ranged from 22.3 to 41.9 mg kg?1 and 9 to 12 %, respectively. Zinc fertilization also significantly reduced grain phytate and increased grain Zn concentration. Zinc fertilization, especially broadcasting and subsurface banding combined with foliar spray decreased grain [phytate]:[Zn] ratio to 28 and 21 and increased Zn bioavailability by trivariate model of Zn absorption to 2.04 to 2.40, respectively. Conclusively, broadcasting and subsurface banding combined with foliar spray is suitable for optimal maize yield and agronomic Zn biofortification of maize grain. This would also be helpful to optimize Zn and protein concentration in maize grain.  相似文献   

20.
Increasing zinc (Zn) concentration of cereal grains is a global challenge to alleviate Zn deficiency‐related health problems in humans caused by low dietary Zn intake. This study investigated the effects of soil‐ and foliar‐applied nitrogen (N) and Zn fertilizers on grain Zn accumulation of durum wheat (Triticum durum) grown on a Zn‐deficient soil. In addition, localization of Zn and protein within durum wheat grain was studied by using Bradford reagent for protein and dithizone (diphenyl thiocarbazone) for Zn. Grain Zn concentration was greatly enhanced by soil or foliar applications of Zn. When Zn supply was adequately high, both soil and foliar N applications improved grain Zn concentration. Consequently, there was a significant positive correlation between grain concentrations of Zn and N, when Zn supply was not limiting. Protein and Zn staining studies showed co‐localization of Zn and protein within grain, particularly in the embryo and aleurone. Results indicate that N and Zn fertilization have a synergistic effect on grain Zn concentration. Possibly, increasing N supply contributes to grain Zn concentration by affecting the levels of Zn‐chelating nitrogenous compounds or the abundance of Zn transporters. Our results suggest that nitrogen management can be an effective agronomic tool to improve grain Zn concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号