首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
深松对土壤特性及玉米产量的影响(英文)   总被引:6,自引:3,他引:6  
土壤压实和缺水成为制约华北平原作物产量的2个重要因素,为了提高半干旱地区旱地对自然降水的利用率,打破犁底层,达到节约用水、提高作物产量的目的,该文于2011年至2013年,在济宁进行了深松和当地旋耕2种耕作方式对土壤物理性质和玉米产量影响的试验研究。试验采用随机化完全区组设计,并采用方差分析评价不同耕作方式的耕作效果。试验结果表明,除了表层土(0~15 cm),在作物的所有生长时期,深松耕作下的土壤容重和紧实度明显小于旋耕,尤其是玉米吐丝期。另外,在玉米吐丝期,深松下的25~35 cm土层含水量比旋耕高出9.45%(2012年)和8.64%(2013年)。深松能显著提高玉米产量达6.08%~7.23%,但2种耕作方式对玉米的千粒质量影响相差不大。该研究对为华北平原提供一种更可持续的耕作方式—深松耕作具有重要意义。  相似文献   

2.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

3.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

4.
Sustainability of urban soils lies in their ability to facilitate water and air permeabilities. Exogenous organic matter has been shown to have a positive impact on these properties. Under urban conditions, a large one‐time input of an organic amendment was made to the reconstituted soil. Two organic materials, green‐waste compost (gw) or cocompost from sewage sludge and wood chips (sw), were mixed with sandy loam soil (40% v/v) and placed in 600‐L containers. Containers received a 29‐cm thick layer of sandy loam soil–organic matter mix over a 28‐cm thick layer without organic amendment. Volumetric water content, dry bulk density, hydraulic conductivity at saturation and water retention were measured over 5 yrs in the soils and values for the mixes and a control compared. After this time, dry bulk density was greater (1.54 g/cm3) in control than in gw or sw soils (1.31 and 1.11 g/cm3, respectively), whereas hydraulic conductivity at saturation was smaller (4 × 10?7 m/s) than in gw (3.4 × 10?6) or sw (3.7 × 10?6 m/s). HYDRUS 1D water balance model indicated that below 27 cm depth in the control after 5 yrs, there was a high degree of anoxia, lasting >200 days per year, compared with <40 days in gw and sw. Amplification of the risk of anoxia below 27 cm depth after 10 yrs was 323, 151 and 100 days in the control, gw and sw, respectively. Organic matter amendment could support sustainable urban soils for ten years after soil reconstitution.  相似文献   

5.
A 762‐mm‐diameter pipe 1,886 km long was installed to transfer crude oil in the USA from North Dakota to Illinois. To investigate the impact of construction and restoration practices on long‐term soil productivity and crop yield, vertical soil stresses induced by a Caterpillar (CAT) pipe liner PL 87 (475 kN vehicle load) and semi‐trailer truck (8.9 kN axle load) were studied in a farm field. Soil properties (bulk density and cone penetration resistance) were measured on field zones within the right‐of‐way (ROW) classified according to construction machine trafficking and subsoil tillage (300‐mm‐depth tillage and 450‐mm‐depth tillage in two repeated passes) treatments. At 200 mm depth from the subsoiled surface, the magnitude of peak vertical soil stress from trafficking by the semi‐truck trailer and CAT pipe liner PL 87 was 133 kPa. The peak vertical soil stress at 400 mm soil depth appeared to be influenced by vehicle weight, where the Caterpillar pipe liner PL 87 created soil compaction a magnitude of 1.5 greater than from the semi‐trailer truck. Results from the soil bulk density and soil cone penetration resistance measurements also showed the ROW zones had significantly higher soil compaction than adjacent unaffected corn planted fields. Tillage to 450 mm depth alleviated the deep soil compaction better than the 300‐mm‐depth tillage as measured by soil cone penetration resistance within the ROW zones and the unaffected zone. These results could be incorporated into agricultural mitigation plans in ROW construction utilities to minimize soil and crop damage.  相似文献   

6.
To evaluate the use of organic amendments as an alternative to conventional fertilization,a 10-year experiment on a loam soil was conducted under a crop rotation system in both greenhouse and outdoor plots applied with chemical fertilizers (NPK) and vegetal compost (organic fertilizer) in the Guadalquivir River Valley,Spain.The effect of these two different fertilization regimes on the soil physical properties was evaluated.Soil organic carbon (OC),soil bulk density (BD),soil water retention (WR),available water content (AWC),aggregate stability (AS),and soil physical quality (Dexter’s index,S) were determined.The use of organic fertilizer increased OC and resulted in a significant increase in AS and a decrease in BD compared to the mineral fertilizer application in both greenhouse and outdoor plots.The outdoor plots showed the lowest BD values whereas the greenhouse plots showed the highest AS values.In the last years of the 10-year experiment the S parameter was significantly higher in organic fertilizer plots,especially for greenhouse plots.At the end of the study period,there were no significant differences in WR at field capacity (FC) between treatments in both systems;the AWC was also similar in the greenhouse plots but higher in the mineral outdoor plots.In mineral fertilizer treatments,a small improvement in the physical properties was also observed due to the utilization of less aggressive tillage compared with the previous intensive cropping system.Physical soil properties were correlated with soil OC.The sustainable management techniques such as the use of organic amendments and low or no tillage improved soil physical properties,despite the differences in management that logically significantly affected the results.  相似文献   

7.
Both biochar and compost may improve carbon sequestration and soil fertility; hence, it has been recommended to use a mixture of both for sustainable land management. Here, we evaluated the effects of biochar–compost substrates on soil properties and plant growth in short rotation coppice plantations (SRC). For this purpose, we planted the tree species poplar, willow, and alder in a no‐till field experiment, each of them amended in triplicate with 0 (= control) or 30 Mg ha?1 compost or biochar–compost substrates containing 15% vol. (TPS15) and 30% vol. biochar (TPS30). For three years running, we analyzed plant growth as well as soil pH, potential cation exchange capacity (CEC), stocks of soil organic carbon (SOC), total N, and plant‐available phosphate and potassium oxide.Biochar‐compost substrates affected most soil properties only in the topsoil and for a limited period of time. The CEC and total stocks of SOC were consistently elevated relative to the control. After three years the C gain of up to 6.4 Mg SOC ha?1 in the TPS30 plots was lower than the added C amount. Especially in the case of TPS30 treatment, C input was characterized by the greatest losses after application, although the black carbon of the biochar was not degraded in soil. Additionally, tree growth and woody biomass yield did not respond at all to the treatments. Overall, there were few if any indications that biochar–compost substrates improve the performance of SRC under temperate soil and climate conditions. Therefore, the use of biochar for such systems is not recommended.  相似文献   

8.
耕深对土壤物理性质及小麦-玉米产量的影响   总被引:10,自引:4,他引:10  
为了解不同犁底层破除程度对黄淮海平原农田土壤蓄水保墒、穿透阻力动态变化及作物产量的影响,在山东德州试验基地以冬小麦-夏玉米轮作农田为研究对象,设置4个犁底层厚度处理,分别为犁底层不破除(RT15)、犁底层破除1/3(DL20)、犁底层破除2/3(DL25)和犁底层完全破除(DL40)。结果表明:1)完全或者部分破除犁底层均能够显著降低10~30 cm土层容重和穿透阻力,各处理降低幅度具体表现为DL40DL25DL20RT15。2)DL20、DL25和DL40处理有利于增加降水或灌溉后水分入渗,冬小麦苗期20~70 cm土壤平均含水率分别较RT15处理提高5.3%、15.9%和23.6%,且冬小麦季耗水量分别较RT15处理提高4.9%、10.2%和11.6%;DL20、DL25和DL40处理夏玉米苗期20~70 cm土壤平均含水率分别较RT15处理提高7.7%、14.2%和15.8%,但夏玉米季耗水量分别较RT15处理降低5.8%、7.6%和10.5%。3)冬小麦季0~15和15~30 cm土层穿透阻力均表现为双峰型,且2土层受冻融作用影响各处理在越冬期达到穿透阻力峰值1 489.2~2 128.1和1 925.4~4 423.7 kPa;30~45 cm土层各处理穿透阻力变化规律在两季作物生长后期差异较大,冬小麦生长后期表现为DL40DL25DL20RT155,而夏玉米后期表现为DL40DL25DL20RT15。4)相对完全打破犁底层,部分打破犁底层更有利于提高水分利用效率,显著增加作物产量,DL25处理冬小麦和夏玉米产量分别较DL40处理增加4.2%和2.4%。综合考虑,DL25是目前相对较好的犁底层改良方式,此时犁底层厚度适当,既可节省农机能耗,又可兼有透水、增产效能。  相似文献   

9.
Soil compaction impacts growing conditions for plants: it increases the mechanical resistance to root growth and modifies the soil pore system and consequently the supply of water and oxygen to the roots. The least limiting water range (LLWR) defines a range of soil water contents within which root growth is minimally limited with regard to water supply, aeration and penetration resistance. The LLWR is a function of soil bulk density (BD), and hence directly affected by soil compaction. In this paper, we present a new model, ‘SoilFlex‐LLWR’, which combines a soil compaction model with the LLWR concept. We simulated the changes in LLWR due to wheeling with a self‐propelled forage harvester on a Swiss clay loam soil (Gleyic Cambisol) using the new SoilFlex‐LLWR model, and compared measurements of the LLWR components as a function of BD with model estimations. SoilFlex‐LLWR allows for predictions of changes in LLWR due to compaction caused by agricultural field traffic and therefore provides a quantitative link between impact of soil loading and soil physical conditions for root growth.  相似文献   

10.
P. KAHLE  C. BAUM  B. BOELCKE 《土壤圈》2005,15(6):754-760
A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomycorrhizal colonization of the fine roots. Representative plots of three trials, Giilzow (GUL), Vipperow (VIP) and Rostock (ROS), were used to measure the topsoil inventories at the very beginning and after six (GUL), seven (VIP) and ten (ROS) years of afforestation with fast growing trees. The effect on soil organic carbon, plant available nutrients, reaction, bulk density, porosity and water conditions was analyzed, Arable soils without tree coppice were used as controls. Additionally, the endoand ectomycorrhizal colonization of two Salix and two Populus clones were investigated at one site (GUL) in 2002. The amounts of organic carbon in the topsoil increased significantly (P 〈 0.01) presumably induced by leaf and root litter and also by the lack of tillage. The soil bulk density significantly decreased and the porosity of the soil increased significantly (both P 〈 0.01). The proportion of medium pores in the soil also rose significantly (P 〈 0.05 and 0.01). Generally, afforestation of arable soils improved soil water retention. Ectomycorrhizas dominated the mycorrhizal formation of the Salix and Populus clones, with the accumulation of organic matter in the topsoil suspected of supporting the ectomycorrhizal formation. Thus, agroforestry with Salix and Populus spp. conspicuously affected chemical and additionally physical properties of the top layer of Cambisols within a period of six years.  相似文献   

11.
Conservation agriculture (CA) based on best‐bet crop management practices may increase crop and water productivity, as well as conserve and sustain soil health and natural resources. In a 2‐year study, we assessed the effects of tillage and crop establishment (TCE) methods on productivity, profitability and soil physical properties in a rice–wheat (RW) system. The six TCE treatments were used to study the impact, which are puddled transplanted rice followed by conventionally tilled wheat (CTPR–CTW), direct‐seeded rice on the flat followed by zero‐till wheat (CTDSR–ZTW), zero‐till direct‐seeded rice with residue followed by zero‐till wheat with residue (ZTDSR+R–ZTW+R), transplanted rice after rotavator puddling followed by zero‐till wheat (RTTPR–ZTW), transplanted rice after rotavator puddling followed by rotary till wheat (RTTPR–RTW) and farmer practice rice–wheat (FP–RW). Result of the study revealed that mean rice yield was not significantly affected by different TCE methods. Wheat planted with ZTDSR+R–ZTW+R gave 30% larger grain yield than FP‐RW. Overall, among all the TCE treatments, the RW system yields and net returns were maximum under ZTDSR+R–ZTW+R. The fastest mean infiltration rate (0.10 cm hr–1) was registered in ZTDSR+R–ZTW+R plots, whereas the slowest was in FP‐RW plots (0.05 cm hr–1). Bulk density at 15–20 cm soil depth was least in ZTDSR+R–ZTW+R (1.70 Mg m–3) and greatest in FP‐RW (1.73 Mg m–3). Results from this study revealed that conventionally tilled (CT) and transplanting of rice could be successfully replaced by adoption of the profitable double ZT–RW system.  相似文献   

12.
Short‐rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long‐term no‐tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3‐ and 6‐year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short‐rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic‐C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic‐C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial‐C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of β‐glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long‐term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil.  相似文献   

13.
It is generally accepted that liming ameliorates soil acidity. However, the method of lime application is thought by many to influence its effectiveness in acid soils. In this study, we wanted to assess the degree of effectiveness of surface‐applied lime and lime incorporated into the soil on soil structural attributes and water retention of a Dystrudept soil in the SE region of the State of Paraná, Brazil. Lime was added at the rate of 15 t/ha to soil through: (i) surface broadcasting, (ii) incorporation via ploughing and harrowing, (iii) incorporation via subsoiling and harrowing. A control treatment with zero lime application was included in the experiment. The addition of lime by surface broadcasting resulted in significant reductions in soil bulk density (BD) and macroporosity (Ma) and increases in total porosity (TP) and microporosity (Mi) of the top soil layer (0–0.10 m). The reverse was the case in the 0.10‐ to 0.20‐m soil layer; where lime was incorporated via ploughing and harrowing, increases in BD and reductions in TP and Ma were observed. Addition of lime also significantly increased soil water retention, with maximum retention recorded from soil amended with surface broadcast lime. Changes in soil chemical attributes (increases in pH, Ca2+ and Mg2+ contents; reductions in potential acidity and Al3+ content) were responsible for the changes observed in structural and physical attributes, and water retention. Bearing in mind the lower application costs, improvement in the soil chemical attributes for plant development and soil physical quality, surface broadcast lime can be considered a promising alternative for no‐till farmers.  相似文献   

14.
《Soil Use and Management》2018,34(3):354-369
Hydraulic properties of soils, particularly water retention, are key for appropriate management of semiarid soils. Very few pedotransfer functions (PTF s) have been developed to predict these properties for soils of Mediterranean regions, where data are particularly scarce. We investigated the transferability of PTF s to semiarid soils. The quality of the prediction was compared to that for soils originating from temperate regions for which most PTF s were developed. We used two soil data sets: one from the Paris basin (French data set, n  = 30) and a Syrian data set (n  = 30). Soil samples were collected in winter when the water content was near field capacity. Composition and water content of the samples were determined at seven water potentials. Continuous‐ and class‐PTF s developed using different predictors were tested using the two data sets and their performance compared to those developed using artificial neural networks (ANN ). The best performance and transferability of the PTF s for both data sets used soil water content at field capacity as predictor after stratification by texture. The quality of prediction was similar to that for ANN ‐PTF s. Continuous‐ and class‐PTF s may be transferable to other countries with performances that vary according to their ability to account for variation in soil composition and structure. Taking into account predictors of composition (particle size distribution, texture, organic carbon content) and structure (bulk density, porosity, field capacity) did not lead to a better performance or the best transferability potential.  相似文献   

15.
Vegetation restoration efforts (planting trees and grass) have been effective in controlling soil erosion on the Loess Plateau (NW China). Shifts in land cover result in modifications of soil properties. Yet, whether the hydraulic properties have also been improved by vegetation restoration is still not clear. The objective of this paper was to understand how vegetation restoration alters soil structure and related soil hydraulic properties such as permeability and soil water storage capacity. Three adjacent sites with similar soil texture, soil type, and topography, but different land cover (black locust forest, grassland, and cropland) were selected in a typical small catchment in the middle reaches of the Yellow River (Loess Plateau). Seasonal variation of soil hydraulic properties in topsoil and subsoil were examined. Our study revealed that land‐use type had a significant impact on field‐saturated, near‐saturated hydraulic conductivity, and soil water characteristics. Specifically, conversion from cropland to grass or forests promotes infiltration capacity as a result of increased saturated hydraulic conductivity, air capacity, and macroporosity. Moreover, conversion from cropland to forest tends to promote the creation of mesopores, which increase soil water‐storage capacity. Tillage of cropland created temporarily well‐structured topsoil but compacted subsoil as indicated by low subsoil saturated hydraulic conductivity, air capacity, and plant‐available water capacity. No impact of land cover conversion on unsaturated hydraulic conductivities at suction > 300 cm was found indicating that changes in land cover do not affect functional meso‐ and microporosity. Our work demonstrates that changes in soil hydraulic properties resulting from soil conservation efforts need to be considered when soil conservation measures shall be implemented in water‐limited regions. For ensuring the sustainability of such measures, the impact of soil conversion on water resources and hydrological processes needs to be further investigated.  相似文献   

16.
17.
The application of density fractionation is an established technique, but studies on short‐term dynamics of labile soil fractions are scarce. Objectives were (1) to quantify the long‐term and short‐term dynamics of soil C and N in light fraction (LFOC, LFON, ρ ≤ 2.0 g cm–3) and microbial biomass C (Cmic) in a sandy Cambisol as affected by 28 y of different fertilization and (2) to determine the incorporation of C4‐C into these labile fractions during one growing season of amaranth. The treatments were: straw incorporation plus application of mineral fertilizer (MSI) and application of farmyard manure (FYM) each at high (MSIH, FYMH, 140–150 kg N ha–1 y–1) and low (MSIL, FYML, 50–60 kg N ha–1 y–1) rates at four field replicates. For all three sampling dates in 2008 (March, May, and September), stocks of LFOC, LFON and Cmic decreased in the order FYMH > FYML > MSIH, MSIL. However, statistical significance varied markedly among the sampling dates, e.g., with LFOC being significantly different (p ≤ 0.05) in the order given above (sampling date in March), significantly different depending on the fertilizer type (May), or nonsignificant (September). The high proportion of LFOC on the stocks of soil organic C (45% to 55%) indicated the low capacity of soil‐organic‐matter stabilization on mineral surfaces in the sandy Cambisol. The incorporation of C4‐C in the LFOC during one growing season of amaranth was small in all four treatments with C4‐LFOC ranging from 2.1% to 3.0% of total LFOC in March 2009, and apparent turnover times of C3‐derived LFOC ranged from 21 to 32 y for the sandy soils studied. Overall, our study indicates that stocks of LFOC and LFON in a sandy arable soil are temporarily too variable to obtain robust significant treatment effects of fertilizer type and rate at common agricultural practices within a season, despite the use of bulked six individual cores per plot, a common number of field replicates of four, and a length of treatments (28 y) in the order of the turnover time (21–32 y) of C3‐derived LFOC.  相似文献   

18.
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Studies aiming at quantification of roots growing in soil are often constrained by the lack of suitable methods for continuous, non‐destructive measurements. A system is presented in which maize (Zea mays L.) seedlings were grown in acrylic containers — rhizotrons — in a soil layer 6‐mm thick. These thin‐layer soil rhizotrons facilitate homogeneous soil preparation and non‐destructive observation of root growth. Rhizotrons with plants were placed in a growth chamber on a rack slanted to a 45° angle to promote growth of roots along the transparent acrylic sheet. At 2‐ to 3‐day intervals, rhizotrons were placed on a flatbed scanner to collect digital images from which root length and root diameters were measured using RMS software. Images taken during the course of the experiment were also analyzed with QUACOS software that measures average pixel color values. Color readings obtained were converted to soil water content using images of reference soils of known soil water contents. To verify that roots observed at the surface of the rhizotrons were representative of the total root system in the rhizotrons, they were compared with destructive samples of roots that were carefully washed from soil and analyzed for total root length and root diameter. A significant positive relation was found between visible and washed out roots. However, the influence of soil water content and soil bulk density was reflected on seminal roots rather than first order laterals that are responsible for more than 80 % of the total root length. Changes in soil water content during plant growth could be quantitifed in the range of 0.04 to 0.26 cm3 cm—3 if image areas of 500 x 500 pixel were analyzed and averaged. With spatial resolution of 12 x 12 pixel, however, soil water contents could only be discriminated below 0.09 cm3 cm—3 due to the spatial variation of color readings. Results show that this thin‐layer soil rhizotron system allows researchers to observe and quantify simultaneously the time courses of seedling root development and soil water content without disturbance to the soil or roots.  相似文献   

20.
耕作方式对辽西褐土区土壤穿透阻力的影响及机理   总被引:2,自引:2,他引:0  
为了探明耕作方式转变对土壤物理性质的影响,研究设置田间定位试验,监测长期旋耕转变为免耕和深松耕后土壤容重、水分和穿透阻力的变化特征。试验设免耕(no tillage,NT)、深松(subsoiling,SS)、旋耕(rotary tillage,RT)3个处理,在玉米生长季监测土壤含水量、容重和穿透阻力动态,定量并分析土壤穿透阻力对含水量和容重变化的响应。结果表明,玉米生育期NT处理的土壤容重保持相对稳定,RT和SS处理容重逐渐增大;与RT和SS处理相比,NT处理增加0—30 cm的容重、0—45 cm的含水量和0—15 cm的穿透阻力,但在干旱时期降低15—45 cm的穿透阻力,避免了土壤紧实对玉米的胁迫。基于含水量和容重参数,建立了预测土壤穿透阻力的指数模型,其P<0.001,R2为0.77。模型结果表明,当容重>1.4 g/cm3且含水量<0.13 cm3/cm3时,土壤穿透阻力将大于限制作物生长的阈值(2 MPa);在含水量<0.2 cm3/cm3时,土壤穿透阻力对含水量的敏感性显著高于容重,说明该区域干旱(水分)引起的土壤紧实度增加比压实更为重要。免耕有助于该区域保持土壤水分,同时降低容重增加导致的土壤紧实效应,有利于避免土壤紧实胁迫对作物生长的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号