首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the effect of a living mulch with white clover on the growth of maize in an Andisol. Maize was grown using a living mulch without fertilizer application, or by conventional cultivation with or without fertilizer application. Although the living mulch did not affect the amount of available phosphate in soil, the phosphorus concentration of maize shoots increased due to the living mulch compared with conventional cultivation without fertilizer application. Arbuscular mycorrhizal (AM) colonization of maize roots was higher with the living mulch than with conventional cultivation. These results suggested that a living mulch with white clover enhanced the phosphorus uptake by maize through AM colonization.  相似文献   

2.
【目的】丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)侵染作物根系形成菌根共生体系对于作物吸收磷具有重要作用,但该结果大多来源于室内受控试验,有限的田间试验因环境条件、试验材料与接种技术等差异致使AMF菌剂应用效果不一。本研究通过玉米菌根化育苗和田间移栽,分析了接种AMF对玉米生长、养分吸收、籽粒产量及养分含量的影响,以期推进菌根技术的实际生产应用。【方法】以自交品系玉米B73为供试作物,于2018年5月至10月在北京市延庆区进行了田间试验。田间小区设置基施磷(+P)和不施磷(–P)处理。供试AMF为Rhizophagus irregularis Schenck&Smith BGC AH01。玉米种子催芽后,分别播入加入AMF菌剂(+M)和菌剂过滤液(–M)的育苗钵内,培养两周后移栽至田间。玉米在田间条件下生长至拔节期时,使用便携式光合仪测定叶片光合速率与气孔导度,取样测定地上部与根部干重和养分元素含量,同时测定菌根侵染率;在玉米完熟期取样,测定籽粒百粒重、籽粒产量及养分含量。【结果】无论田间施磷与否,接菌植株根系的菌根侵染强度和丛枝丰度均显著高于不接菌植株。不施磷情况下,+M处理显著提高了玉米根系干重,玉米生长的菌根依赖性(163.7%)显著高于施磷情形(124.1%)。–P–M处理玉米叶片的光合速率和气孔导度显著低于其他3个处理。–P+M处理玉米叶片的光合参数、玉米地上部和根部磷含量与+P+M均无显著差异。与–P–M处理相比,–P+M显著提高了玉米籽粒产量和百粒重,同时也提高了籽粒中锌、锰、镁等矿质养分的含量,且与+P+M处理相比均无显著差异。【结论】玉米幼苗接种AMF后再移栽到田间,可以显著提高拔节期玉米根系的菌根侵染率,促进玉米地上部和根部对磷及锌、锰和镁的吸收,进而促进玉米的生长,提高籽粒产量和养分含量。本试验条件下,菌根化育苗可以达到与施磷同样的效果,在保障作物不减产的前提下减少磷肥施用量。  相似文献   

3.
We tested the inter‐specific variability in the ability of three dominant grasses of temperate grasslands to take up organic nitrogen (N) in the form of amino acids in soils of differing fertility. Amino acid uptake was determined by injecting dual labeled glycine‐2‐13C‐15N into the soil, and then measuring the enrichment of both 13C and 15N in plant tissue after 50 hours. We found enrichment of both 13C and 15N in root and shoot material of all species in both soils, providing first evidence for direct uptake of glycine. We show that there was considerable inter‐specific variability in amino acid uptake in the low fertility soil. Here, direct uptake of amino acid was greater in the grass Agrostis capillaris, which typically dominates low fertility grassland, than Lolium perenne, which inhabits more fertile sites. Direct uptake of amino acid for Holcus lanatus. was intermediate between the above two species. Unlike in the low fertility soil, there was no difference in uptake of either 13C or 15N by grasses in the high fertility soil, where uptake of mineral N is thought to be the major mechanism of N uptake of these grasses. Overall, our findings may contribute to our understanding of differences in competitive interactions between grasses in soils of different fertility status.  相似文献   

4.
Field experiments were conducted on cotton to evaluate the different cotton-based intercropping system along with balanced nutrient management practices on enhancing cotton productivity. Cropping systems have been considered as main plots and nutrient management practices have been considered as subplots. The results showed that cotton + onion system recorded the highest cotton equivalent yield (CEY) of 2052 and 1895 kg ha?1 which was on par with cotton intercropped with dhaincha, which recorded 2010 and 1894 kg of CEY ha?1 in both the seasons. Combined application of 100% recommended NPK with bioinoculants (S5) registered highest CEY in both the seasons. Cotton intercropped with dhaincha (M2) recorded highest uptake of N, P, and K. Among the nutrient management practices, application of 100% recommended NPK with bioinoculants (S5) showed highest uptake of N, P, and K. A similar trend was noticed in the post-harvest soil fertility too and it is significantly higher under cotton + dhaincha and application of 100% recommended NPK with bioinoculants treatment compared to 100% recommend NPK alone. It could be concluded from these results that crop productivity can be improved and soil fertility status can be sustained with integrated plant nutrient management practices.  相似文献   

5.
A pot experiment was conducted to investigate the mobilization of sparingly soluble inorganic and organic sources of phosphorus (P) by red clover (Trifolium pratense L.) whose roots were colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae and in association with the phosphate-solubilizing (PS) bacterium Bacillus megaterium ACCC10010. Phosphate-solubilizing bacteria and rock phosphate had a synergistic effect on the colonization of plant roots by the AM fungus. There was a positive interaction between the PS bacterium and the AM fungus in mobilization of rock phosphate, leading to improved plant P nutrition. In dual inoculation with the AM fungus and the PS bacterium, the main contribution to plant P nutrition was made by the AM fungus. Application of P to the low P soil increased phosphatase activity in the rhizosphere. Alkaline phosphatase activity was significantly promoted by inoculation with either the PS bacterium or the AM fungus.  相似文献   

6.
A pot experiment was conducted to investigate the mobilization of sparingly soluble inorganic andorganic sources of phosphorus (P) by red clover (Trghlium pmtense L.) whose roots were colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae and in association with the phosphate-solubilizing (PS) bacterium Bacillus megaterium ACCC10010. Phosphate-solubilizing bacteria and rock phosphate hada synergistic effect on the colonization of plant roots by the AM fungus. There was a positive interaction between the PS bacterium and the AM fungus in mobilization of rock phosphate, leading to improved plant P nutrition. In dual inoculation with the AM fungus and the PS bacterium, the main contribution to plant P nutrition was made by the AM fungus. Application of P to the low P soil increased phosphatase activityin the rhizosphere. Alkaline phosphatase activity was significantly promoted by inoculation with either the PS bacterium or the AM fungus.  相似文献   

7.
The growth characteristics and nutrient uptake dynamics of Mytilaria laosensis Lec. seedlings treated weekly with conventional and exponential fertilizations were investigated at intervals of 3 weeks for 12 weeks in a greenhouse. Leaf area and pigment compositions were also examined at the final harvest. The fertility treatments (mg nitrogen seedling–1) included two conventional (50C and 100C) and four exponential (50E, 100E, 200E and 400E) fertilizations, and no fertilization (0) as control. The biomass and nutrient contents of M. laosensis seedlings increased exponentially with time. Steady-state nutrition of nitrogen (N) and phosphorus (P) were achieved under exponential fertilization treatment of 50?mg?N?seedling?1 (50E) and conventional fertilization treatment of 100?mg?N?seedling–1 (100C), resulting from simultaneous increase of their biomass and nutrient contents. The nutrient uptake efficiency continuously increased over time in conventionally fertilized seedlings, but it increased initially and declined or remained stable from 11 weeks after transplanting in the exponentially fertilized seedlings. At the end of the experiment, the conventionally fertilized seedlings performed remarkably better than all exponentially fertilized seedlings except for seedlings in the exponential treatment of 200?mg?N?seedling–1 (200E) in height, root collar diameter and biomass. The optimum N and P uptake occurred in 200E seedlings because their N and P contents were 71%/60% and 14%/9% higher than both conventionally fertilized seedlings (50C/100C) without significant differences in growth performance between them. The leaf areas and chlorophyll contents of seedlings increased significantly with the increase of fertilizer levels and nearly peaked at the range from 100 to 200?mg?N?seedling–1, whereas the delivery schedule (conventional and exponential) had little effect on leaf areas and chlorophyll contents of seedlings at the same nutrient level (50 or 100?mg?N?seedling–1). These findings will provide evidence to make guidelines on fertilization for nursery production of M. laosensis, and help understand the nutrient demands for this species and further benefit the development of its plantations.  相似文献   

8.
In most plant species, nutrient uptake is facilitated upon root association with symbiotic arbuscular mycorrhizal (AM) fungi. The aim of the present experiment was to test how the form in which nitrogen (N) is supplied to the growth medium affects substrate pH, AM development, and contribution of the symbiosis to phosphorus (P) uptake from sparingly available or soluble resources. Cowpea (Vigna unguiculata L. Walp) plants inoculated or noninoculated with AM fungi (Glomus sp.) were grown in pots with a sand substrate supplied with nutrient solution. The nutrient solution was prepared either with a high or a low concentration of soluble P, and NO ‐N : NH ‐N ratios of 9:1 or 5:5. The substrate supplied with low‐P nutrient solution was either or not additionally amended with ground rock phosphate. Despite a high level of root colonization, AM fungi used in the present study did not appear to increase plant availability of rock phosphate. It cannot be excluded that the ability of AM root systems to acquire P from sparingly available resources differs depending on the plant and fungal genotypes or environmental conditions. The absence from the growth substrate of P‐solubilizing microorganisms able to associate with AM mycelia might also have been a reason for this observation in our study. Increased supply of NH relative to NO improved plant P availability from rock phosphate, but also had a negative effect on the extent of AM‐fungal root colonization, irrespective of the plant P‐nutritional status. Whether increasing levels of NH can also negatively affect the functioning of the AM symbiosis in terms of plant element uptake, pathogen protection or soil‐structure stabilization deserves further investigation.  相似文献   

9.
不同氮磷肥施用量对城市景观草坪生长与养分吸收的影响   总被引:10,自引:0,他引:10  
为了给城市景观草坪科学施肥提供理论依据,试验在城市环境条件下研究了不同氮、磷用量对景观草坪生长与养分吸收的影响。结果表明:7、9、10月氮、磷用量为41.90 kg/hm2处理的叶片长度最大,分别高于对照1.58、2.46、2.62 cm,差异显著;7~10月41.90 kg/hm2处理干物质积累量最高,分别比对照提高2.79、1.78、2.32、1.89倍,差异显著,37.71 kg/hm2处理与对照之间无显著差异。41.90 kg/hm2处理的氮吸收量7~10月分别比对照提高3.93、2.50、3.59、2.66倍,差异显著,46.09 kg/hm2处理显著高于对照;41.90 kg/hm2处理的磷吸收量7~10月分别高于对照3.98、2.18、3.07、2.18倍,差异显著,8~10月37.71 kg/hm2处理与对照之间无显著差异;41.90 kg/hm2处理的钾吸收量7~10月分别高于对照4.24、2.16、3.22、2.55倍,差异显著。综合分析认为,城市景观草坪氮、磷施用量以41.90 kg/hm2为宜。  相似文献   

10.
Soils of the peach growing region of the Southeastern Coastal Plain are highly leached and excessively acid, with inherently low concentrations of subsoil magnesium (Mg). A greenhouse experiment was conducted to determine the effects of varying Mg concentrations at low pH on growth and Mg uptake of three peach seedling cultivars commonly used as rootstock in the region. Seedlings of ‘Lovell’, ‘Elberta’, [Prunus persica (L.) Batsch] and ‘Nemaguard’ [Prunus persica (L.) Batsch X Prunus davidiana Carriere] were grown for 36 days in nutrient solution containing 9, 21, 42, 84, 167, 333, and 667 μM Mg. Magnesium concentration in solution did not increase lateral length, number of laterals, trunk cross‐sectional area, or root volume. All terminal growth responses were cultivar related. Magnesium concentration in the leaves, stems, and roots were increased either by quadratic or cubic relationship with solution Mg concentration while Mg uptake rate was increased linearly with solution Mg concentration with all three seedling cultivar. Uptake rates of calcium, manganese, and zinc, and tissue concentrations of phosphorus, manganese, and zinc decreased with increasing Mg concentrations in nutrient solution. Predicted Mg uptake rates by‐regression analysis revealed a cubic uptake isotherm for Nemaguard and a quadratic isotherm for Elberta. Predicted tissue Mg concentration followed similar patterns of accumulation for leaves and stems, but root Mg concentration followed a cubic uptake isotherm for all three seedlings. The linear Mg uptake at low pH may be an important physiological characteristic that enables Lovell seedlings to outperform either Elberta or Nemaguard when used as a rootstock in the southeastern soils.  相似文献   

11.
Herbs of the Labiatae have relatively low salt tolerance. They are widely grown in drylands, but salt stress there is a typical problem and may reduce yields. To examine their salt tolerance mechanisms, we grew basil, sage, thyme, and oregano in nutrient solution containing 50 mM NaCl and determined the biomass; contents of Na, K, and Mg in leaf blades, stems, and roots; contents of total chlorophyll, malondialdehyde (MDA), hydrogen peroxide in leaf blades; and activities of antioxidative enzymes in leaf blades. The salt tolerance decreased in the order of basil ≈ sage > thyme > oregano. The good salt tolerance of basil was explained by a significant increase in the activity of catalase, in addition to the low Na/K ratio of leaf blades due to the retention of Na in stems and roots and of K in leaf blades. The good salt tolerance of sage was explained by the low Na/K ratio in leaf blades and the prevention of lipid peroxidation by high antioxidative enzyme activities, despite its poorer management of nutrient uptake. In thyme, although catalase activity increased significantly to alleviate salt-induced oxidative stress caused by Na influx into all parts, low K and Mg allowed shoot weight in particular to decrease. In oregano, antioxidative responses appeared as significant increases in ascorbate peroxidase and glutathione reductase activity, and K was accumulated in leaf blades, but serious salt-induced oxidative stress caused by high Na influx into all parts reduced the growth of all parts. These results show that despite similar responses among species, salt tolerance is not necessarily the same. In this experiment, we revealed the salt tolerance mechanism of each of four Labiatae herbs by revealing their strengths and weaknesses in nutrient uptake and antioxidative responses.  相似文献   

12.
One means of achieving increased forage grass production on infertile soils is to select plant genotypes which grow efficiently at low levels of available nutrients. This requires methods to identify variability in individual plant nutrient response from among large populations of plants grown under controlled environmental conditions.

A compact, containerized system, partially developed for growing large numbers of forage grass seedlings for use in automatic machine transplanter research, was adapted as the basis for such a screening technique. Three trials were made with 100‐plant samples of a kleingrass‐75 (Panicum coloratum L.) population to test the utility of the system. Results of these trials showed that differences in nutrient use efficiency (= reciprocal of nutrient concentration in the plant tissue, or milligrams dry matter produced per milligram nutrient absorbed) among the grass plants could be effectively identified by using the system in conjunction with laboratory analysis of the material grown. Plants could be maintained in vigorous condition during several harvest periods, and those selections that were retained could be easily transplanted for further propagation and evaluation.  相似文献   


13.
土壤微生物生物氮与植物氮吸收的关系   总被引:13,自引:0,他引:13  
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM),chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM). The N taken up by ryegrass on the soils was determined after a galsshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM,CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.  相似文献   

14.
Growth, development, and uptake of essential nutrients as influenced by nitrogen (N) form and growth stage was evaluated for ‘Freedom’ poinsettias (Euphorbia pulcherrima Willd. Ex Klotz.). Treatments consisted of five nitrate (NH4 +):ammonium (NO3 ) ratios (% NH4 +:% NO3 ) of 100:0, 75:25, 50:50, 25:75, and 0:100 with a total N concentration of 150 mg L‐1. Plants were grown in solution culture for ten weeks under greenhouse conditions. Nutrient uptake data was combined into three physiological growth stages. Growth stage I (GSI) included early vegetative growth (long days). Growth stage II (GSII) began at floral induction and leaf and bract expansion (short days). Growth stage III (GSIII) was from visible bud through anthesis and harvest. Dry weights for all plant parts and height increased as the ratio of NO3 increased. Leaf area and bract area were maximized with 25:75 and 50:50 N treatments, respectively. Nitrogen treatments significantly affected foliar nutrient concentrations with calcium (Ca++) and magnesium (Mg++) being highest when NO3 was the predominant N form. Uptake of each macronutrient was averaged across all treatments and divided into physiological growth stages (GS) to identify peak demand periods during the growth cycle. The greatest uptake of NH4 + and NO3 was from the early vegetative stage to floral induction (GSI). Phosphorus (P), potassium (K+), and Mg++ uptake were greatest from floral induction to visible bud (GSII) and Ca++ uptake remained relatively unchanged through GSI and GSII. Uptake was lowest for all nutrients from visible bud to anthesis (GSIII). Results from this study clearly indicate that peak demand periods for macronutrient uptake existed during the growth cycle of poinsettia.  相似文献   

15.
Abstract

Although crude oil contamination is a constraint for crop production, some plants can develop under crude oil contaminated conditions by utilizing crude oil as nutrients after decomposition. A greenhouse trial was conducted to investigate growth, nutritional composition and enzymatic response of vetiver grass in confronting with crude-oil contamination as affected by gibberellic acid (GA) and Tween 80. Application of GA or co-application of GA with Tween 80 significantly increased mean shoot dry weight. Application of Twee 80 alone or in combination with GA significantly increased mean root dry weight as compared to control which was attributed to the effectiveness of Tween 80 alone or in combination with GA on the removal of total petroleum hydrocarbons from polluted soil. Application of crude oil diminished shoot phosphorus, iron, zinc and manganese uptakes. Application of GA and Tween 80, however, compensated the decrease in nutrient uptakes in vetiver grass resulted from crude-oil contamination. Application of crude oil at both 2 and 4% (W/W) levels increased catalase (CAT) activity and proline (PRO) content. Superoxide dismutase (SOD) activity increased only following the application of 2% crude oil level, while addition of all amendments decreased CAT activity. Addition of GA decreased activity of SOD. None of the studied amendments had a significant effect on PRO content. Application of a combination of GA and Tween 80 under crude oil contamination are recommendable since such treatments not only inhibited adverse effect of crude oil on nutrients uptake but also caused that vetiver grass tolerated high level of crude oil contamination.  相似文献   

16.
In soils, amino acids may be an important source of nitrogen for plants, at least in those where organic matter is not quickly degraded. The physiology of uptake of amino acids by roots was mainly studied in the 70's and 80's, before genes encoding amino acid importers were cloned in the 90's. While two families of amino acid transporters have been identified, yielding a total of about 100 genes, the role of each member is yet to be elucidated. As a tool for studying the role of amino acid transporters from Arabidopsis we set up a new hydroponic system suitable for radioisotope use. This system enables reproducible amino acid uptake by roots and estimation of the transport to the shoots of the amino acid taken up. We show that the rates of glutamine (Gln) uptake by wild‐type roots and transfer to the shoots were linear, and that other tested amino acids were translocated to the shoots with lower efficiency than Gln. A T‐DNA insertion mutant for a Gln exporter was compared to the wild‐type plants. Gln uptake and transfer were similar in both genotypes, showing that the suppression of the exporter did not affect uptake or transfer of amino acids to the shoots. The main advantage of the hydroponic system presented here is that all the materials used to grow Arabidopsis are virtually free and can therefore be discarded, a useful feature when working with radioactivity.  相似文献   

17.
通过田间小区试验,研究了磷钾肥滴灌追施对玉米干物质、产量及养分吸收的影响。结果表明,磷钾肥部分基施、部分滴灌追施玉米的生物量和产量要优于磷钾肥全部基施,其中磷肥75%基施和25%滴灌追施比磷肥全部基施的玉米干物质提高4.36%,产量增加8.14%;钾肥50%基施和50%滴灌追施比钾肥全部基施的玉米干物质增加4.86%,产量增加4.98%。磷钾肥部分基施、部分滴灌追施显著提高了玉米氮、磷、钾的吸收量和利用率,其中磷肥75%基施和25%滴灌追施的氮、磷、钾肥的利用率分别为46.65%、28.42%、46.33%,比磷肥全部基施分别提高了6.0、8.44和8.95个百分点;钾肥50%基施和50%滴灌追施的氮、磷、钾肥的利用率分别为45.46%、27.92%、46.95%,比钾肥全部基施分别提高了4.26、0.99和11.89个百分点。  相似文献   

18.
Abstract

Barley plants were grown in 201 pots containing a sandy soil rich in exchangeable and watersoluble Ca. Results from earlier experiments have indicated that the mode of action of supplementary Ca may differ according to, for example, the associate anion. In this experiment soil‐Ca was activated by placing NH4NO3 at three depths in the soil and by adding solutions of Ca salts. Yields were found to increase with successively deeper placements of NH4NO3 in treatments without Ca application, whereas only small differences between placement depths were observed when Ca was added as a saturated gypsum solution or equivalent amounts of CaCl2. The very pronounced responses to Ca application were in good agreement with visual symptoms of Ca deficiencies later in the season and with the nutrient uptake rates and growth rate over the intire growth period.  相似文献   

19.
The effect of soil and foliar application of different iron (Fe) compounds (FeSO4, Fe‐EDTA, Fe‐EDDS, and Fe‐EDDHA) on nutrient concentrations in lettuce (Lactuca sativa cv. Australian gelber) and ryegrass (Lolium perenne cv. Prego) was investigated in a greenhouse pot experiment using quartz sand as growth medium. Soil application was performed in both the acidic and alkaline pH range, and foliar application to plants grown in the alkaline sand only. Lettuce growth was depressed by Fe deficiency in the alkaline sand, whereas the treatments had no effect on ryegrass growth. Soil‐applied Fe compounds raised the Fe concentrations in lettuce. This was especially true for the Fe chelates, which also increased yields. Soil‐applied Fe compounds had no statistically significant effect on Fe concentrations in ryegrass. Concentrations of manganese (Mn) in lettuce were equally decreased by all soil‐applied chelates. In the alkaline sand, soil application of Fe‐EDDHA elevated copper (Cu) and depressed zinc (Zn) concentrations in lettuce. The chelates increased Zn concentration in ryegrass. Foliar application of Fe‐EDDS increased Fe concentrations in lettuce and in ryegrass most. Fe‐EDDHA depressed Mn and Zn concentrations in lettuce more than other Fe compounds, suggesting the existence of another mechanism, in addition to Fe, that transmits a corresponding signal from shoot to roots with an impact on uptake of micronutrients.  相似文献   

20.
Abstract

The agronomic efficiency of nitrogen (N) fixing and phosphate solubilizing microorganisms and an arbuscular mycorrhizal (AM) fungus on vigour, photosynthetic pigments, seed yield, grain protein and nutrient uptake of greengram plants, were assessed in soils, deficient in phosphorous (P). The tripartite inoculation of Glomus fasciculatum + Bradyrhizobium sp. (vigna) + Bacillus subtilis, significantly increased dry matter, chlorophyll content and nutrient uptake of greengram plants. Generally, the number of nodules formed per plant was more at flowering stage, which decreased at podfill stage of plant growth. Seed yield increased significantly by 27% due to inoculation with Bradyrhizobium sp. (vigna) + B. subtilis + G. fasciculatum, relative to the control. Grain protein ranged from 17% (P. variabile) to 28% (Bradyrhizobium sp. (vigna) + B. subtilis + G. fasciculatum) in inoculated greengram. A negative effect occurred on some of the measured parameters when P. variabile was used alone or in combination treatments. The N and P contents in measured plant parts (e.g., roots, shoots, straw and grain) differed considerably among treatments. The populations of PSM, percentage of root infection and density of the AM fungal spore improved in some of the treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号