共查询到20条相似文献,搜索用时 62 毫秒
1.
利用自回归滑动平均模型方法建立木材干燥过程的数学模型,在此基础上对木材干燥过程的不确定部分建立灰色控制模型,分析灰色PID控制在木材干燥控制系统中的应用。仿真和试验结果表明:与传统PID方法相比,应用灰色PID算法的木材干燥控制系统的超调量更小、响应时间更短、系统更稳定;灰色PID方法提高了木材干燥控制系统的暂态性能和稳态性能,缩短了干燥时间,减小了水、电资源消耗;说明灰色PID控制算法应用于木材干燥过程,可行、有效。 相似文献
2.
3.
木材干燥应力数学模型 总被引:3,自引:0,他引:3
刘应安 《东北林业大学学报》1998,26(5):56-59
用切片法对木荷的干燥应力进行测试。用回归分析和聚类分析建立了干燥应力的数学模型。通过分析得出;木材弹性模量在干燥过程中不是常数,随含水率下降而增加;木材弹性应力和残余应力在厚度方向上的分布分别近似为四次多项式和二次多项式。应力的极值点发生在木材的表层和中心层,含水率应力与含水率之间近似为线性或二次多项式关系;木材干燥应力变化过程可分类三个阶段。 相似文献
4.
木材干燥柔性控制系统 总被引:3,自引:0,他引:3
通过分析木材干燥过程中的主要影响因素和控制参数,设计了基于微机的柔性化木材干燥控制系统。它通过微机及PC多功能实验板来完成数据采集和对系统的控制。根据材种、板材厚度及干燥质量要求等因素选择合适的干燥工艺基准进行控制,达到良好的控制效果。本系统具有干燥过程参数的实时在线测量、全自动及适用性广的优点,这种通用化、柔性和智能化的特点是木材干燥监控系统的主要发展方向。 相似文献
5.
木材干燥是木材加工生产中不可缺少的一道重要工序,也是耗能最大的工序。现在能源短缺,燃料价格上涨,节省能源尤其重要。加强对木材干燥过程节能减排降耗的研究,寻求高效环保的节能技术是目前国内外学者广泛关注的课题之一。在分析木材干燥能耗的基础上,从3个方面探讨了木材含水率分级干燥的必要性:1)生材含水率不同导致每一块板材的干燥特性不同;2)与水分移动有关的木材性质(物理力学性质等)的差异;3)木材中各种状态水分的干燥能耗。进而对木材含水率分级干燥过程进行了分析,提出了木材含水率分级干燥的概念,并对分级干燥理论进行了分析。探究了含水率分级干燥对木材干燥质量、干燥效率和干燥过程节能减排的影响,采用含水率分级技术实现木材的精细干燥,可以达到缩短干燥周期,降低能耗,提高干燥质量的目的。最后,提出应根据干燥材的用途要求,在节能经济的基础上,制定合适的含水率分级标准的应用设想。 相似文献
6.
橡胶木材干燥速度的相关因素分析及提高措施 总被引:1,自引:0,他引:1
李粤 《华南热带农业大学学报》2001,7(2):18-21
通过对橡胶木材加工中干炽速度相关因素的理论分析,提出在保证干燥质量的前提下,提高干燥速度的措施。 相似文献
7.
木材干燥技术能够提高木材利用率和木材质量,是木材不降等的主要保障技术之一。该研究将先进的神经网络算法与PID控制技术相结合,并建立相应的智能控制系统,从而对木材干燥的全过程进行智能控制,最后,利用Matlab软件对该系统进行了建模和仿真,通过实验证明该系统具有较好的应用价值。 相似文献
8.
马尾松木材微波干燥特性的研究 总被引:1,自引:0,他引:1
研究了马尾松Pinus massoniana木材微波干燥速度、温度梯度和含水率梯度随时间的变化规律。实验结果表明,微波连续干燥过程明显分为加速段、等速段和减速段3个阶段,等速段在整个干燥过程中占的比例最大。微波干燥过程中,温度的变化大致分为初期升温,等温和后期升温3个阶段,初期升温和等温阶段木材内温度分布比较均匀,后期升温阶段木材内的温差逐渐增大。微波干燥过程中,在整个横断面上,木材初含水率梯度没有被加大,而是被均匀化,甚至还出现木材表面含水率提高的情况。图6参10 相似文献
9.
木材是一种复杂的含湿多孔黏弹性生物体,木材中水分的含量随着树种、树龄和砍伐季节各异。为了保证木制品的品质和使用寿命,必须采取适当的措施使木材中的含水率降至规定值。在木材干燥过程中,干燥设备性能、干燥工艺、木材特性等诸多因素,都对干燥后的木材品质有所影响。将高级单片机设术、自动控制技术应用于木材干燥设备的控制系统,并提出了控制系统的软硬件设计,其中硬件部分由传感器组、信号处理电路、MSP 430 F149微控制器、隔离驱动及其他单片机外围电路组成,给出了相关参数。软件部分由主程序,温度、木材含水率数据采集子程序,数据处理子程序,查表子程序,修正子程序,键盘、显示子程序等部分组成,给出了主流程图。图4表1参17 相似文献
10.
11.
微波真空干燥过程中木材内的水分迁移机理 总被引:9,自引:3,他引:9
该文以马尾松木材为研究对象,对微波真空干燥过程中木材内部的含水率分布进行了研究,首次阐述了微波真空干燥过程中木材内部的水分迁移机理.研究结果表明:在微波真空干燥过程中,木材内部的含水率分布比较均匀,在厚度方向没有明显的整体性含水率梯度,特别是在干燥的后期,木材内部的含水率分布更加均匀;当含水率在纤维饱和点(FSP)以上时,木材中的自由水和水蒸气在压力梯度的作用下以渗透流的形式在木材内部迁移;当含水率在FSP以下时,木材中的水分在压力梯度的作用下以水蒸气的形式向木材表面迁移;因热扩散、含水率梯度引起的水分迁移可以忽略不计. 相似文献
12.
13.
间歇微波干燥过程中木材内含水率动态分布规律 总被引:2,自引:0,他引:2
为研究微波干燥过程中木材内部的含水率动态分布规律,以红橡和南方松木材为研究对象,采用无损检测的X射线扫描方法,揭示间歇微波干燥过程中木材内部含水率分布的动态变化规律。结果表明:微波干燥的绝大部分时间内,木材厚度方向存在着整体性内高外低的含水率梯度场;随着干燥过程的进行,木材内部水分更趋均匀,当木材平均含水率在10%以下时,木材内水分分布非常均匀;在整个微波干燥过程中,木材内部虽然发现了部分内层含水率低于外层的情况,但并未出现与常规干燥相反的含水率梯度。 相似文献
14.
该研究根据微波真空干燥过程中木材内部水分和热量的迁移机理,建立了木材微波真空干燥的数学模型,并通过试验对该模型进行了验证。结果表明:木材的微波真空干燥过程可以分为3个阶段,即快速升温加速干燥段(Ⅰ)、恒温恒速干燥段(Ⅱ)和后期升温减速干燥段(Ⅲ),且恒温恒速干燥段在整个干燥过程中所占的比例较大;该模型能较好地模拟木材在微波真空干燥过程中的温度和含水率的变化规律,其模拟精度较高,模拟值与试验值之间相关系数的平方在0.9以上,且含水率变化规律的模拟精度高于温度变化规律的模拟精度。 相似文献
15.
苗平 《北京林业大学学报》2005,(Z1)
在木材加工企业,木材干燥所消耗的热量占整个企业总能耗的70%左右.因此在木材干燥过程中进行节能,其意义十分重大.将蒸汽喷射式热泵技术应用于木材干燥,可以降低木材干燥的能耗,提高干燥质量和经济效益;蒸汽喷射式热泵以水蒸汽为工质,冷凝温度可以较高,适用于各种木材在不同的温度下的干燥以及高温干燥.它兼有蒸汽干燥适应性广和除湿干燥节能的优点,避免了除湿干燥不能喷蒸、干燥温度低的缺点. 相似文献
16.
该文以兴安落叶松为研究对象,探讨了试件锯解时因摩擦热造成的水分损失,试件在烘箱中烘干时间过长而产生的热分解,试件带热称重时重量传感器的温度效应等因素对采用称重法检测木材含水率的测量精度的影响;试验获得了相应的修正公式,对多片试件平均含水率的传统计算法进行了修正.研究表明:锯解时木材水分损失对称重法测量精度的影响程度随含水率升高而增大;过长时间在烘箱中的热分解,带热称重时重量传感器的温度效应等对称重法测量精度除极精确的研究外,可以忽略. 相似文献
17.
预热是木材干燥的重要环节 ,实践中一般仅凭经验来确定预热时间 .该文对木材预热时间进行了理论计算和试验验证 ,并将试验数据与经验预热时间进行了对比分析 ,讨论了木材厚度、预热温度、含水率、基本密度对预热时间的影响程度 .试验及分析结果表明 :①理论预热时间与试验值很接近 ,通过理论计算来确定木材的预热时间是可行的 .②经验预热时间与试验值相差很大 ,其比值介于 2 2~ 8 6之间 .③木材含水率和基本密度对预热时间无显著影响 ;预热温度对预热时间有一定的影响 ;木材厚度是影响预热时间的最主要因素 . 相似文献
18.
微波真空干燥过程中木材内部的温度分布 总被引:2,自引:2,他引:2
该文以马尾松木材为研究对象,对微波真空干燥过程中木材内部的温度分布进行了研究.结果表明:在一定的辐射功率(160 kW/m3)和厚度(60 mm)范围内,木材内的温度分布比较均匀,基本不呈现出整体性的温度梯度;在干燥的后期,木材内温度分布的局部不均匀性有加大的趋势;在微波真空干燥过程中,木材内部的温度差是由于微波场和湿木材本身不同部位介电特性的差异引起的,这种不均匀性以局部的形式存在于木材中. 相似文献
19.
《北京林业大学学报》2012,34(2)
结合超声波和真空干燥的优点,采取超声波一真空协同干燥方法,对核桃楸试件进行干燥。在不同干燥温度、绝对压力、超声波功率和频率的条件下,检测木材干燥过程中内部水分的有效扩散系数,并建立对应条件下的干燥动力学模型。结果表明:超声波~真空协同干燥过程中,木材内部水分有效扩散系数随着温度的升高而增大,而绝对压力对于水分有效扩散系数影响较小;干燥过程中,温度对干燥速率起着主要作用,相同温度、不同压力下木材的干燥速率随着时间的变化趋势一致;通过有效扩散系数和菲克单方向扩散方程得到的干燥模型和实际干燥动力学很接近。 相似文献
20.
该文通过对刨花干燥过程中影响因素的研究,以期为刨花干燥工艺的优化设计和过程控制提供理论依据.研究表明,随着气流温度的升高,刨花平均干燥速率增大,单位能耗也相应增加;随着气流速度的提高,刨花平均干燥速率增大,单位能耗逐渐降低;随着刨花初含水率的升高,刨花平均干燥速率加大,单位能耗增加;随着装载量的增大,刨花平均干燥速率大幅减小,单位能耗基本不变,总能耗急剧增加;转筒的运动影响了刨花的干燥,其自转可提高平均干燥速率.实际生产中应根据产量和生产成本,选择合适的干燥条件进行生产. 相似文献