共查询到20条相似文献,搜索用时 15 毫秒
1.
《Scandinavian Journal of Forest Research》2012,27(1-4):105-112
Correlations between root growth capacity (RGC), at the time of planting, and field performance were studied for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. Before planting a gradient in seedling viability was generated through exposure to low root temperatures and different winter storage regimes. The hypothesis that high RGC values would improve field performance was to some extent verified for pine seedlings while no correlations could be registered for spruce. Reasons for these results are discussed. 相似文献
2.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites. 相似文献
3.
In order to quantify the importance of ectomycorrhizal fungi on nutrient uptake from the coarse-soil fraction of a haplic Cambisol (alumic), a microcosm study that allowed for nutrient budgets was designed. Ectomycorrhizal- and fungicide-treated spruce seedlings were grown on isolated and cleaned gneiss fragments (6.3 mm > Ø > 2 mm) from 90 cm soil depth. The substrate was the only source of Ca, K and Mg. Ectomycorrhizal seedlings showed no signs of nutrient deficiencies and biomass increased significantly compared to initial seedling biomass. Ectomycorrhizal seedlings seemed well adapted to survive on the coarse-soil substrate and acquired Ca, K and Mg from the coarse-soil substrate. Gneiss fragments of the ectomycorrhizal treatment were covered by fine roots and ectomycorrhizal hyphae, as observed microscopically. Fungicide-treated seedlings?? root development was retarded, and shoot biomass only increased from stored nutrient reserves of the seedlings. The suppression of EcM colonization by the fungicide Topas® apparently caused a root growth inhibiting effect. Furthermore, the extinction of mycorrhiza initiated an increased nitrification and acidification and a consequent nutrient cation release triggered by nitrate in the drainage. 相似文献
4.
When spring frosts occur on recently planted forest sites, severe damage may occur to the seedlings. The aim of the present study was to test how different low levels of nutrient concentrations in Norway spruce (Picea abies (L.) Karst.) seedlings affected spring frost hardiness and time of bud break. Seedlings were grown in a greenhouse for one season and supplied with fertiliser containing 22, 43 and 72 mg N l–1, respectively. The treatments resulted in needle nitrogen concentrations ranging from 0.9 to 1.8% in autumn. After winter storage at 0 °C, bud break was recorded on seedlings growing in the greenhouse, outdoors and in growth chambers at 12 °C and at 17 °C. Freezing tests were performed on seedlings directly removed from winter storage and following one week growth in the greenhouse. Seedlings receiving fertiliser with 43 mg N l–1 had less freezing injury than the two other fertilisation treatments in the present study. The earliest bud break occurred in seedlings receiving 72 mg N l–1. 相似文献
5.
《Scandinavian Journal of Forest Research》2012,27(1-4):63-70
Newly‐germinated Norway spruce seedlings were grown for 15 weeks in pots of iron podzol soil that received additions three times a week of nutrient solution containing six levels of Al (0, 0.37, 0.74, 1.5, 3.0 or 6.0 mM) and two levels of Ca (0.09 or 0.46 mM). The Ca concentrations in shoots and roots decreased with increasing Al levels. Growth was suppressed at 0.74 mM Al in the nutrient solution, which gave 0.5 mM Al in saturated soil extracts at the end of the experiment. 相似文献
6.
《Scandinavian Journal of Forest Research》2012,27(1):19-28
Genetic variation in nitrogen (N) and phosphorus (P) utilization (amount of total biomass produced per unit nutrient in the needles) and growth traits in seedlings from 30 open‐pollinated families of Picea abies (L.) Karst. was estimated. Seedlings were grown under two nutrient regimens: free access to nutrients and restricted access. There was a strong treatment effect on most growth traits. With free access, families allocated relatively more biomass to the stem and less to the roots than they did with restricted access. Heritabilities for growth traits were higher with free access treatment (0.33–0.81) than with restricted access treatment (0.20–0.45). Family variance components for N and P utilization were significant (p < 0.05) with restricted access but not with free access. Genetic correlation between nutrient utilization and height traits with restricted access ranged from none to moderate ( — 0.31 to 0.56). Genetic correlations between the same trait assessed in the two treatments were strong for height and moderate for biomass. 相似文献
7.
de Chantal Michelle Leinonen Kari Ilvesniemi Hannu Westman Carl Johan 《New Forests》2004,27(2):159-173
The aims of the study are to find out the effects of site preparation on soil properties and on the morphology of three-year-old Pinus sylvestris L. and Picea abies (L.) Karst. seedlings sown at different dates along a slope with variation in soil texture, water, and fertility. Based on the hypothesis that soil texture affects soil water content, water retention capacity, and nutrient content, we studied site preparation of varying intensities: exposed C horizon, mounds (broken O/E/B horizons piled over undisturbed ground), and exposed E/B horizon. Though the growing time difference between sowings was about one month, after three growing seasons, spring-sown seedlings were larger than summer-sown seedlings. P. sylvestris seedlings were largest with mounds and smallest with exposed C horizon, but site preparation did not affect the morphology of P. abies seedlings. 相似文献
8.
Effects of 3, 25, 100, 200 and 800 microM Mn on biomass and pigment, starch and nitrate concentrations were studied in Norway spruce (Picea abies (L.) Karst.) seedlings grown with either NO(3) (-) or NH(4) (+) as the sole nitrogen source. After 77 days of exposure to 800 microM Mn, shoot growth had ceased in about 50% of the seedlings independently of the N source. Despite high Mn concentrations in roots and shoots of the Mn-treated seedlings, no visible symptoms of Mn toxicity were evident. The rate of root elongation was decreased by treatment with >/= 200 microM Mn when N was supplied as NO(3) (-), but not when it was supplied as NH(4) (+). This difference could be attributed to the higher Mn concentrations in root tips of the NO(3) (-)-grown seedlings compared with the NH(4) (+)-grown seedlings. In Mn-treated seedlings, the concentration of Mg, and to a lesser extent that of Ca, decreased. Depletion of these elements might account for the observed growth depression. Potassium concentrations were similar in the control and Mn-treated seedlings. Treatment of seedlings with 800 microM Mn for 50 days led to several physiological changes: starch accumulated, the concentrations of nitrate and phenolic compounds increased, pigment concentrations decreased, and in vivo nitrate reductase activity in roots was reduced. 相似文献
9.
《Scandinavian Journal of Forest Research》2012,27(5):375-383
Abstract The object of this study was to obtain Norway spruce seedlings with buds set, ready for summer planting from 1 July. An early long-night treatment prevented flushing of the newly formed terminal buds and ceased height growth, but slightly reduced hardiness in buds and needles. Nevertheless, a sufficient hardiness level in the autumn was acquired at a Norwegian nursery at 59°46′ N, with plants of the local provenance given a long-night treatment (14 h) for 13 days from 25 June. Similar treatment at a nursery at 64°30′ N did not give the same result; all treatments led to a second flush with resumed growth of the local provenance. A trial with seed lots from several provenances was therefore performed at this nursery, and a significant correlation was found between the critical night length of the seed lot and their ability to produce non-flushing buds; the longer the critical night length of the seed lot, the fewer non-flushing buds. Responses at the northern nursery are probably due to the lack of a dark period after termination of the treatment, and too short a treatment period to attain bud dormancy. An early and successful long-night treatment will also produce shorter seedlings with a larger root collar diameter. 相似文献
10.
We investigated the adaptation of three spruce species (Picea glehnii Masters, P. jezoensis Carr. and P. abies Karst.) to growth in northern Japan on serpentine soils (characterized by high concentrations of heavy metals and Mg, a low Ca/Mg ratio and low fertility) and fertile brown forest soils. Among species, seedling survival on serpentine soil was highest in P. glehnii. Shoot growth of P. glehnii was similar whether grown on serpentine or brown forest soil, whereas shoot growth of the other species was significantly less on serpentine soil than on brown forest soil. On serpentine soil, needle life span of P. glehnii was at least 3 years longer than that of the other two species. Needle area per shoot of P. glehnii was significantly higher on serpentine soil than on brown forest soil up to a shoot age of 8 years. In all three species, light-saturated photosynthetic rate (Pmax) decreased with needle age independently of soil type. However, on serpentine soil, Pmax in P. glehnii was higher, particularly in older needles, than in the other species. Furthermore, on serpentine soil, needle concentrations of nitrogen and phosphorus were higher in P. glehnii than in the other species. We conclude that P. glehnii is better adapted to serpentine soil than P. jezoensis and P. abies at least in part because of its greater needle life span and higher needle nutrient concentrations. 相似文献
11.
12.
Niinemets U 《Tree physiology》2002,22(8):515-535
Foliar light-saturated net assimilation rates (A) generally decrease with increasing tree height (H) and tree age (Y), but it is unclear whether the decline in A is attributable to size- and age-related modifications in foliage morphology (needle dry mass per unit projected area; M(A)), nitrogen concentration, stomatal conductance to water vapor (G), or biochemical foliage potentials for photosynthesis (maximum carboxylase activity of Rubisco; V(cmax)). I studied the influences of H and Y on foliage structure and function in a data set consisting of 114 published studies reporting observations on more than 200 specimens of various height and age of Picea abies (L.) Karst. and Pinus sylvestris L. In this data set, foliar nitrogen concentrations were independent of H and Y, but net assimilation rates per unit needle dry mass (A(M)) decreased strongly with increasing H and Y. Although M(A) scaled positively with H and Y, net assimilation rates per unit area (A(A) = M(A) x A(M)) were strongly and negatively related to H, indicating that the structural adjustment of needles did not compensate for the decline in mass-based needle photosynthetic rates. A relevant determinant of tree height- and age-dependent modifications of A was the decrease in G. This led to lower needle intercellular CO2 concentrations and thereby to lower efficiency with which the biochemical photosynthetic apparatus functioned. However, V(cmax) per unit needle dry mass and area strongly decreased with increasing H, indicating that foliar photosynthetic potentials were lower in larger trees at a common intercellular CO2 concentration. Given the constancy of foliar nitrogen concentrations, but the large decline in apparent V(cmax) with tree size and age, I hypothesize that the decline in Vcmax results from increasing diffusive resistances between the needle intercellular air space and carboxylation sites in chloroplasts. Increased diffusive limitations may be the inevitable consequence of morphological adaptation (changes in M(A) and needle density) to greater water stress in needles of larger trees. Foliage structural and physiological variables were nonlinearly related to H and Y, possibly because of hyperbolic decreases in shoot hydraulic conductances with increasing tree height and age. Although H and Y were correlated, foliar characteristics were generally more strongly related to H than to Y, suggesting that increases in height rather than age are responsible for declines in foliar net assimilation capacities. 相似文献
13.
Budget studies have shown that internal cycling may contribute a large proportion of the annual nutrient supply required to support new growth in trees. Use of budgets to quantify internal cycling only quantifies the net transfer of nutrients within the plant. Differential partitioning of remobilized nutrients and current nutrient uptake could lead to errors in the interpretation of results from these studies. We have quantified the dynamic relationships among tree growth, nutrient uptake and internal cycling by labeling the current uptake of N in trees that received contrasting amounts of nutrient. Two-year-old seedlings of Sitka spruce (Picea sitchensis (Bong.) Carr.) were grown in sand culture in a greenhouse for one year. The trees received nutrients in a balanced solution at either a high (high-RAR) or a low (low-RAR) relative addition rate throughout the experiment. Current N uptake was labeled with (15)N from April 13 to July 25. Thereafter, trees were re-potted in clean sand and unlabeled N applied until November 13. Overall growth was sustained for approximately 10 weeks before treatment effects were observed. Initially, no differences in the partition of growth or remobilized N occurred, although partition of current uptake favored the roots of plants in the low-RAR treatment. After 6 weeks, the partition of both growth and remobilized N altered in favor of roots of plants in the low-RAR treatment. Nutrient supply had no effect on the amount or rate of N remobilization. No evidence was found to suggest that N taken up in the current season and partitioned to preexisting shoots or roots is remobilized late in the season to support growth of new shoots. However, some trees in the high-RAR treatment exhibited a second flush of growth later in the season that was partially sustained by remobilization of (15)N from current shoots formed earlier in the season. Use of (15)N demonstrated differential partitioning of current uptake and remobilized N. The results highlight the limitations of simple budget studies for quantifying internal cycling. 相似文献
14.
Sphagnum peat (peat), spruce bark compost (compost), peat +perlite (1 : 1, v : v) and compost + perlite (1 : 1, v : v)substrates were inoculated with vegetative alginate-bead inoculumof Hebeloma crustuliniforme, Hygrophorus agathosmus or Paxillusinvolutus or left uninoculated prior to the addition of Norwayspruce seed. Growth and percentage of mycorrhization of barerootseedlings cultivated in a greenhouse were evaluated after thefirst growing season. Seedlings grown in peat-based substrateshad significantly larger aboveground and total dry weight, butsignificantly lower mycorrhization percentage than those grownin compost-based substrates. There were no significant differencesbetween fungal treatments (including control) for both the percentageof mycorrhization and growth of seedlings. The artificiallyintroduced fungi were not efficient in mycorrhizal formation– naturally occurring fungi were common in all treatments.However, a significant interaction between substrate and fungustreatments in root dry weight was detected. Hebeloma-inoculatedseedlings grown in peat showed the highest value of root dryweight. This fact indicates other possible effects of the fungion root growth independent of mycorrhization. Growth parameterswere negatively correlated with the extent of mycorrhization,indicating allocation of host photosynthates to the fungi. Tothe best of our knowledge, operational inoculation of Norwayspruce seedlings with the test fungi has not been reported previously. 相似文献
15.
Seed-borne fungi induce conspicuous changes in the concentrations of various nutrients (N, P, K, Mg, Na, Ca, Fe, Zn and Mn), thus affecting the growth in height and biomass of seedlings of two conifer species. The data indicates that the changes may be caused by interference in the physiology of the infected seeds and seedlings. The response of the change in the nutrient levels and total height growth towards the pre-chilling treatment of the seeds was not consistent to indicate any trend. 相似文献
16.
Elna Stenström Ndobe Ernest Ndobe Maria Jonsson Jan Stenlid 《Scandinavian Journal of Forest Research》2014,29(1):12-21
The aim of this study was to assess fungal communities in roots of healthy-looking Pinus sylvestris L. and Picea abies (L.) Karst. seedlings in nine forest nurseries in Sweden using a combination of traditional culturing and direct sequencing of internal transcribed spacer of fungal ribosomal RNA (ITS rRNA) from the roots. Culturing from 1800 surface-sterilised root segments resulted in 2387 fungal cultures representing 42 different taxa. Direct sequencing from 180 root segments resulted in 119 ITS rRNA sequences representing 25 different taxa. In total, 55 different fungal taxa were detected using both methods. Although direct sequencing was more efficient than culturing in detecting different fungal taxa, both methods provided complementary information about fungal communities in roots since each detected rather different groups of fungi. The most dominant taxa detected by culturing were Trichoderma viride Pers. (19.5%), Phoma mucivora Davey & Currah (19.1%), Phialocephala fortinii Wang & Wilcox (17.4%) and Meliniomyces variabilis Hambl. & Sigler (10.2%), while Thelephora terrestris Ehrh. (26.1%), Unidentified sp. NS126 (25.2%) and Heliotales sp. C20 (10.1%) were most commonly detected by direct sequencing. In conclusion, results showed that forest nurseries in Sweden harbour diverse communities of fungi associated with the roots of healthy-looking P. sylvestris and P. abies seedlings. Although fungal communities were often dominated by saprotrophs and endophytes, several facultative pathogens were also detected indicating that under suitable conditions they may be a potential threat to the plants. 相似文献
17.
以辣木(Moringa oleifera)品种云南极品27号为材料,采用盆栽试验研究不同施肥量处理对辣木幼苗生长指标、光合参数和养分吸收利用的影响。结果表明:随施肥量增多,辣木幼苗的株高、地径、生物量、根长、根直径、根体积、根表面积等生长指标基本表现为先升高后降低的趋势,施肥量为N9P4.5K4.5 g·株-1时达到最高,单株生物量和壮苗指数分别为对照的3.99和1.53倍;适量施肥能显著提高辣木幼苗的光合能力,有利于生物量的积累。随着施肥量的增加,辣木幼苗叶片的叶绿素含量、净光合速率、水分利用效率先升高后降低,而蒸腾速率、气孔导度则随施肥量的增加而加大;辣木幼苗根、茎、叶组织中N、P、K含量随施肥量的增加先增多后减少,表观吸收率和施肥效率随施肥量增加显著降低,施肥量增加对根系的影响最大;施肥量为N12P6K6 g·株-1时辣木幼苗各生长、光合、养分含量指标均有所降低,根冠比最低,壮苗指数显著低于对照水平,明显抑制辣木幼苗的生长。总之,辣木幼苗最适施肥量为N9P4.5K4.5 g·株-1,施肥量为N12P6K6 g·株-1时抑制辣木幼苗的生长。 相似文献
18.
《Scandinavian Journal of Forest Research》2012,27(1):14-29
Genetic parameters were estimated for wood and growth traits in two 19-yr-old clonal trials and a 40-yr-old full-sib progeny trial of Norway spruce [Picea abies (L.) Karst.]. In the clonal trials high (>0.4) broad-sense heritabilities were found for wood density traits, lignin content, number of internal cracks, growth traits, spiral grain and number of resin canals. Moderate (0.2–0.4) heritabilities were found for tracheid lumen diameter and cell wall thickness, microfibril angle and tracheid length, while low heritabilities (<0.2) were found for pulp yield, fibre strength, wood stiffness and wood colour. Lignin content and pulp yield showed low genetic variation, whereas the genotypic coefficient of variation for most other traits ranged between 5 and 15%. Most traits showed low levels of genotype by environment interaction. Among the wood properties, latewood proportion, earlywood density and ring density showed significant, adverse correlations with volume in both clonal trials. 相似文献
19.
Beech seedlings (Fagus sylvatica L.) were grown in various combinations of three photosynthetic photon flux densities (PPFD, 0.7, 7.3 or 14.5 mol m(-2) day(-1)) for two years in a controlled environmental chamber. Dry mass of leaves, stem and roots, leaf area and number of leaves, and unit leaf rate were affected by both previous-year and current-year PPFD. Number of shoots and length of the main shoot were affected by previous-year PPFD but not by current-year PPFD. Number of leaves per shoot did not change with PPFD, whereas leaf dry mass/leaf area ratio was mainly affected by current-year PPFD. During the first 10 days that newly emerged seedlings were grown at a PPFD of 0.7 or 14.5 mol m(-2) day(-1), transpiration rate per unit leaf area declined. Thereafter, transpiration increased to a constant new rate. Transpiration rate per seedling was closely related to leaf area but the relationship changed with time. In two-year-old seedlings grown at various PPFD combinations of 0.7, 7.3 and 14.5 mol m(-2) day(-1) during Years 1 and 2, leaf area and transpiration rate per seedling were closely correlated at Weeks 7 and 11 after bud burst. Weak correlations were found between root dry mass and transpiration rate per seedling. During Year 2, transpiration rate per leaf area was higher at a particular PPFD in seedlings grown at a previous-year PPFD of 0.7 mol m(-2) day(-1) than in seedlings grown at a previous-year PPFD of 14.5 mol m(-2) day(-1). After transfer of two-year-old seedlings at the end of the experiment to a new PPFD (7.3 or 14.5 mol m(-2) day(-1)) for one day, transpiration rates per leaf area, measured at the new PPFD, were correlated with leaf area and root dry mass, irrespective of former PPFD treatment. 相似文献
20.
During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings. 相似文献