共查询到20条相似文献,搜索用时 15 毫秒
1.
An accompanying paper reports the accumulation of photoactive protochlorophyllide (Pchlide) in the innermost leaf primordia of buds of many tree species. In this paper, we describe plastid differentiation, changes in pigment concentrations and spectral properties of bud scales and leaf primordia of horse chestnut (Aesculus hippocastanum L.) from January until the end of bud break in April. The bud scales contained plastids with grana, stroma thylakoids characteristic of chloroplasts and large dense bodies within the stroma. In January, proplastids and young chloroplasts were present in the leaf primordia, and the fluorescence spectra of the primordia were similar to those of green leaves except for a minor band at 630 nm, indicative of a protochlorophyll(ide). During bud break, the pigment concentrations of the green bud scales and the outermost leaf primordia increased, and Pchlide forms with emission maxima at 633, 644 and 655 nm accumulated in the middle and innermost leaf primordia. Depending on the position of the leaf primordia within the bud, their plastids and their pigment concentrations varied. Etio-chloroplasts with prolamellar bodies (PLBs) and prothylakoids with developing grana were observed in the innermost leaves. Besides the above-mentioned Pchlide forms, the middle and innnermost leaf primordia contained only a Chl band with an emission maximum at 686 nm. The outermost leaf primordia contained etio-chloroplasts with well-developed grana and small, narrow-type PLBs. These outermost leaves contained only chlorophyll forms like the mature green leaves. No Pchlide accumulation was observed after bud break, indicating that etiolation of the innermost and middle leaves is transient. The Pchlide forms and the plastid types of the primordia in buds grown in nature were similar to those of leaves of dark-germinated seedlings and to those of the leaf primordia of dark-forced buds. We conclude that transient etiolation occurs under natural conditions. The formation of PLBs and etio-chloroplasts and the accumulation of the light-dependent NADPH:protochlorophyllide oxidoreductase are involved in the natural greening process and ontogenesis of young leaf primordia of horse chestnut buds. 相似文献
2.
With the increase in abandoned agricultural lands in Western Europe, knowledge on the successional pathways of newly developing forests becomes urgent. We evaluated the effect of time, soil type and dominant species type (shade tolerant or intolerant) on the development during succession of three stand attributes: above-ground biomass, stand height (HT) and stem density (SD). Additionally, we compared above-ground biomass (AGB) in natural and planted forests, using ten chronosequences (8 from the literature and 2 from this study). Both AGB and HT increased over time, whereas SD decreased. HT, SD and AGB differed among species types. For example, birch had greater HT than alder, willow and ash at a similar age and had higher SD than pine and oak at a similar age. However, birch showed lower AGB than pine. HT and AGB differed among soil types. They were higher in rich soil than in poor soils. Comparative analysis between chronosequences showed an effect of the regeneration method (natural regeneration vs plantation) on above-ground biomass. Planted sites had higher AGB than natural regeneration. Time, soil type, species and regeneration method influenced the mechanism of stand responses during secondary succession. These characteristics could be used to clarify the heterogeneity and potential productivity of such spontaneously growing temperate forest ecosystems. 相似文献
4.
Sixty years of individual tree crown class records were used to elucidate the influence of crown class (dominant, codominant, intermediate, or suppressed), shade tolerance (intolerant, midtolerant, or tolerant), and their interactions on the probability of individual tree movement among crown classes. Trees were measured at 10 year intervals between 1927 and 1987, excluding 1947, on 364 nominal 0.01 ha plots. A total of 14 154 individual tree records were used in this analysis. The transition rates among crown classes for 30 year intervals (1927–1957 and 1957–1987) were examined for all combinations of antecedent crown classes and tolerance rankings. The distribution of ingrowth among tolerance rankings was also examined. Mortality rates increased with decreasing crown class for all tolerance rankings, and mortality rates increased with decreasing tolerance. Compared with tolerant trees, midtolerant and intolerant trees had higher rates of ascension into dominant and codominant crown classes and exhibited higher persistence rates in the dominant crown class. These factors suggest that midtolerant and intolerant trees have an advantage over tolerant trees in the higher crown classes, In contrast, tolerant trees had the advantage in suppressed and intermediate crown classes, with lower mortality rates, higher persistence, and higher rates of crown class ascension than for midtolerant or intolerant trees. Crown class stratification was driven by the change in relative advantage of each tolerance ranking among the crown class. Results of this study suggest that the canopy stratum (upper canopy, lower canopy, or mixed) affected by disturbance is as important as disturbance scale, intensity, and frequency in influencing the composition of the suppressed crown class. Because the suppressed crown class is in a constant state of high flux, with fewer than 30% of the suppressed trees remaining in the suppressed crown class for any 30 year period, a small change in the relative persistence or ascension rates among tolerance rankings, whether by a different disturbance or climate regime, could alter the proportion of tolerance rankings in the suppressed crown class and ultimately result in an alternative succession. 相似文献
5.
林木种质资源是林木遗传多样性的载体,是林木良种选育的物质基础,对维持林业可持续发展具有十分重要的意义。该文通过对辽宁林木种质资源保存、利用现状及存在问题进行分析。提出了可行的发展对策。 相似文献
6.
With aid of fluorescein isothiocyanate (FITC) and gold-labelled lectins, together with antibodies against chitinase and β-1,3-glucanases, the spatial distribution of chitin and glucans in hyphal walls of Pythium dimorphum, a causative agent of root die-back disease of conifer seedlings was studied. Contrary to previous reports, this study revealed that chitin, a polymer of N-acetyl-d -glucosamine, is a component of the cell wall of this oomycetous fungus. However, compared with the other amino sugar, N-acetyl-galactosamine, it is not present in significant amounts. Ultrastructural and labelling studies demonstrated that the chitin region is embedded in or masked by glucan residues. 相似文献
7.
Silvopastoral systems offer an alternative to the conventional cow-calf segment of the beef industry in the Midwestern region
of the United States. Little information exists for transitioning from a conventional pasture-based beef operation to a silvopastoral
system utilizing multiple deciduous tree species. Nine pastures approximately 1 ha in size were established with a mixture
of cool-season grasses and legumes to investigate tree protection methods and cattle performance. Four tree species ( Juglans nigra, Gleditsia triacanthos, Quercus rubra, & Carya illinoensis) were planted within six of these pastures. Three methods of protection were tested, and included a no protection control
(Con), foliar application of 0.20% denatonium benzoate (TreeGuard™), or a single strand of electrified poly-wire (EF) in each
of the two grazing years. Cattle damage to young trees was prominent during the two years for Con and TreeGuard™. EF offered
acceptable protection. Red oak trees suffered the highest degree of damage from livestock. Establishing trees within grazed
pastures did not hinder performance of beef cattle. Transitioning from conventional pastures to silvopastures can be accelerated
utilizing an electrified fencing system to prevent cattle damage.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
8.
This study was carried out to assess the relationship of the status of nodulation (i.e., the number of nodules, their shape and size) in root and biomass production of plant growth parameters (i.e., number of leaves, root and shoot lengths, root biomass and shoot biomass) in Albizia saman and Leucaena leucocephala. The assessment started 60 days after seeding. The study revealed that nodulation response and biomass production in both species showed significant dif- ferences over time (p 〈 0.05) in all variables except in the root-shoot ratio (oven-dry) of L. leucocephala. The study also showed significant differences (p 〈 0.05) in nodule formation and biomass production at the end of the study period be- tween the two species except in the number of nodules and leaves and the green root-shoot ratio. There were strong pos- itive correlations between nodule formation and biomass production, i.e., the number of nodules and the age of plants, the number of nodules and leaves, as well as the number of nodules and biomass (root biomass and shoot biomass) in both species. The results obtained using principal component analysis (PCA) and correlation coefficients of the different characteristics of nodulation and biomass production were similar in both species. The PCA showed that shoot biomass (shoot green weight and shoot oven-dry weight) is positively correlated with PC1 (with an eigenvalue of 7.50) and root length is positively correlated with PC2 (with an eigenvalue of 0.19) in the case of A. saman. In the case of L. leucocephala, the PCA revealed that root biomass (root green weight and root oven-dry weight), shoot biomass and shoot length are also positively correlated with PC1, while nodule formation and the number of leaves are positively correlated with PC2 (with an eigenvalue PC1 of 6.92 and PC2 of 0.49). 相似文献
9.
The size and location of silver particles in K-glycerate/AgNO 3 impregnated Swedish pine, green wood as well as high temperature dried, have been studied using TEM micrographs.
The diameter of the silver particles was found to be 2–20 nm in the impregnated green wood and as large as 1000 nm (major
axis) for the ellipsoid-shaped silver clusters in the impregnated dried wood. Studying the projected area of the silver particles
in impregnated green wood indicated that there are a lot of particles (40%) in the compound middle lamella with fewer particles
in the S 2 (6–8%), S 1 (4%) and S 3 (2%) layers. The average distance between the silver particles, 50 nm (S 2-layer), in impregnated green wood shows that the impregnant is distributed in the cell wall at the microfibrilar level. Experimental
results show that the fastest diffusion path into the cell wall is from the lumen over the pit membrane through the compound
middle lamella and not from the lumen through the secondary wall layer S 3.
Received 11 January 1998 相似文献
10.
Summary To advance the discussion on the evolution mechanism of tree growth stresses, the relation between released strain and the chemical components was investigated experimentally. The expansive released strain in the longitudinal direction assumed large values as the lignin content increased in the compression wood, but there was no relation between released strain and lignin content in the normal wood region. The contractive released strain assumed large values as the cellulose content and its crystallinity increased. Their correlation was very high and clear. From these facts, it is considered that the lignin deposition plays an important role in the generation of the growth stresses in compression wood but is not important in normal or tension wood regions. Cellulose microfibrils contract along their longitudinal axis during cell maturation, and the stress included by the contraction creates a longitudinal growth stress in normal and tension woods.The authors thank Prof. R. R. Archer, University of Massachusetts, for his valuable advice. A part of this research was supported by a grant under the Monbusho International Scientific Research Program 相似文献
11.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m 2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species. 相似文献
12.
Early performance of two dipterocarp species Anisoptera marginata and Shorea parvifolia, and a long-living pioneer species Peronema canescens (Verbenaceae) planted in artificial gaps (size 260 m 2) and surrounding untreated stands was studied in a fast-growing plantation of Acacia mangium on an Imperata cylindrica grassland site in South Kalimantan, Indonesia. Forty seedlings of each species were planted at one-meter intervals in lines across each of the five gaps, starting and ending under closed stand. Survival, height and diameter (d 0.05) increments were measured, and the effect of gap opening on the composition and abundance of understorey vegetation (grass, shrub and native tree seedlings and saplings) was studied. 19 months after planting, average survival rates were 97% for A. marginata, 94% for P. canescens and 71% for S. parvifolia, with no statistical differences between gap and closed stand. Substantial mortality and damage of dipterocarps were caused by wild boars; minor damage by dieback (for S. parvifolia) and insect pests (for A. marginata). Early growth was clearly influenced by distance from gap centre and light conditions; the growth of seedlings was greater the nearer the seedlings were situated to centre and the higher the level of daily photosynthetic photon flux density (PPFD) was. Gap opening increased the growth of shrub species Chromolaena odorata, but not that of Imperata grass. It also increased the density and height growth of saplings of native pioneer and secondary tree species. Seedling density increased both in closed stand and actual gaps, but was higher inside gaps.Results indicate good prospects for diversifying the composition of fast-growing forest plantations on severely degraded former forest lands and integrating slow-growing valuable species in plantation programs. Both in-depth ecophysiological studies on species-specific growth requirements, and practical oriented research on silvicultural options and economics need further studies. 相似文献
13.
The three-dimensional (3-D) architecture of a peach tree (Prunus persica L. Batsch) growing in an orchard near Avignon, France, was digitized in April 1999 and again four weeks later in May 1999 to quantify increases in leaf area and crown volume as shoots developed. A 3-D model of radiation transfer was used to determine effects of changes in leaf area density and canopy volume on the spatial distribution of absorbed quantum irradiance (PAR(a)). Effects of changes in PAR(a) on leaf morphological and physiological properties were determined. Leaf mass per unit area (M(a)) and leaf nitrogen concentration per unit leaf area (N(a)) were both nonlinearly related to PAR(a), and there was a weak linear relationship between leaf nitrogen concentration per unit leaf mass (N(m)) and PAR(a). Photosynthetic capacity, defined as maximal rates of ribulose-1,5-bisphosphate carboxylase (Rubisco) carboxylation (V(cmax)) and electron transport (J(max)), was measured on leaf samples representing sunlit and shaded micro-environments at the same time that the tree crown was digitized. Both V(cmax) and J(max) were linearly related to N(a) during May, but not in April when the range of N(a) was low. Photosynthetic capacity per unit N(a) appeared to decline between April and May. Variability in leaf nitrogen partitioning between Rubisco carboxylation and electron transport was small, and the partitioning coefficients were unrelated to N(a). Spatial variability in photosynthetic capacity resulted from acclimation to varying PAR(a) as the crown developed, and acclimation was driven principally by changes in M(a) rather than the amount or partitioning of leaf nitrogen. 相似文献
14.
Cupressus atlantica Gaussen (Cupressaceae) is an endemic and endangered coniferous tree geographically restricted to the N’Fis valley in South-Western Morocco. Like many forest species, C. atlantica exhibits dormancy which delays and reduces germination. To improveseed germination, different pre-treatments were conducted on C.atlantica seeds after storage for different periods (one, two and five years) including: scarification with sandy paper; soaking seeds in hot distilled water at 60℃and 80℃for 15 min and soaking seeds for 48 h in agibberellic acid (GA3) at 1,000 and 2,000 mg·L-1. Results showed that scarification with sandy paper increased the germination rate of Atlas cypress by up to 67%, indicating that the species possess essentially anexogenous dormancy (physical dormancy) due to the hard seed coat(hardseededness). Exogenous application of gibberellic acid (GA3) at1,000 mg·L-1 was also effective in breaking seed dormancy and germination induction. These two treatments induced faster speed germination expressed by low number of days to first germination (8 10days) and low values of mean germination times (MGT). However,germination rate, under any treatment, is greatly dependent on the year of seed collection. Seeds collected in year 2004 gave the highest value,suggesting that even after five years of storage, the germination capacity of C. atlantica seeds could remain high. This observation is very interesting in the exsitu conservation of such endemic and endangered species where the production of seeds is irregular over the years. 相似文献
15.
To meet their wood, fodder and fruit needs, resource-poor farmers with only small land holdings are forced to mix trees in their food crop plots. An experiment was conducted to study the effect of nine tree species planted at 312.5 trees ha –1 (4×8 m) on the yield of bananas planted at 625 stools ha –1 (4×4 m) and beans (80000 plants ha –1) as well as the wood production of the trees when intercropped. In addition, an economic analysis was done to compare the different tree/banana/bean associations.After three and one-half years, wood volume (in m 3 ha –1) of Grevillea robusta (18.1), was highest and that of Erythrina poeppigiana (2.7), Cedrela odorata (2.4) or Markhamia lutea (0.8) was the lowest. Volume of Cedrela serrata (13.7) was not significantly different from that of Albizia chinensis (12.8) but was significantly higher than that of Leucaena diversifolia (6.8), Acrocarpus fraxinifolius (6.7) or Calliandra calothyrsus (6.0).None of the tree species had a significant influence on the yields of the bananas and none affected the yield of the bean crops until the seventh cropping season, three years after the trees were planted. In that year, Grevillea reduced bean yield by 29%, Albizia by 34% and Leucaena by 36%. From the economic analyses, all the treatments except Leucaena and Markhamia had positive net benefits relative to the control (banana/bean) but the results were highly variable. C. serrata was found to be the best tree to be intercropped in a banana/bean system. 相似文献
16.
A 17 acre (6.9?ha) agroforestry research and extension alley cropping trial was established at the Center for Environmental Farming Systems in Goldsboro, North Carolina in January 2007, with a randomized block design with five replications. Loblolly pine ( Pinus taeda), longleaf pine ( Pinus palustris) and cherrybark oak ( Quercus pagoda) were planted in staggered rows, with each species planted for 140?ft (43?m) per replication. Crop land alleys of 40?ft or 80?ft (12.2–24.4?m) wide were left between the tree rows. Crops of soybeans ( Glycine max) and corn ( Zea mays) were planted in alternating years since establishment. As of 2011, survival rates were 93% for cherrybark oak, 88% for longleaf pine and 97% for loblolly pine. Average tree diameter at ground level was 1.0?in (2.5?cm) for cherrybark oak, 2.1?in (5.3?cm) for longleaf and 3.2?in (8.1?cm) for loblolly. Heights averaged 4.6?ft (1.4?m) for cherrybark oak, 5.2?ft (1.6?m) for longleaf pine and 10.4?ft (3.2?m) for loblolly pine. Growth, yield and economic projections for traditional timber production indicated that species volumes and values tracked the height and diameter relationships measured on the site. Loblolly pine had the largest projected internal rate of return, at 7.2%, followed by longleaf pine with pine straw harvests at 5.5%, longleaf without pine straw at 3.5% and cherrybark oak at 1.9%. There might be more loss in crop and silvopasture production with loblolly, however, and production of pine straw for longleaf or game mast for cherrybark oak may offer other benefits. Crop yields on the sandy soils on the site were very poor during the 4?years observed, which had a series of droughts and floods. These led to net financial losses in those years for the demonstration site, but state-wide average farm budget returns did show moderate profits. The results support the merits of agroforestry systems in the upper South to diversify income and reduce financial risks. 相似文献
17.
Using large numbers of DNA markers to predict genetic merit [genomic selection (GS)] is a new frontier in plant and animal breeding programs. GS is now routinely used to select superior bulls in dairy cattle breeding. In forest trees, a few empirical proof of-concept studies suggest that GS could be successful. However, application of GS in forest tree breeding is still in its infancy. The major hurdle is lack of high throughput genotyping platforms for trees, and the high genotyping costs, though, the cost of genotyping will likely decrease in the future. There has been a growing interest in GS among tree breeders, forest geneticists, and tree improvement managers. A broad overview of pedigree reconstruction and GS is presented. Underlying reasons for failures of marker-assisted selection were summarized and compared with GS. Challenges of GS in forest tree breeding and the outlook for the future are discussed, and a GS plan for a cloned loblolly pine breeding population is presented. This review is intended for tree breeders, forest managers, scientist and students who are not necessarily familiar with genomic or quantitative genetics jargon. 相似文献
20.
We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myris-ticaceae) and Tetragastris pana-mensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) >/= 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy. 相似文献
|